• Title/Summary/Keyword: 매연 농도

Search Result 51, Processing Time 0.028 seconds

Soot Temperature and Concentration Measurement Using Emission/Transmission Tomography in Laminar Diffusion Flame (방사와 투과를 이용한 층류확산화염내 매연입자의 온도 및 농도 측정)

  • 송상종;박성호;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2563-2573
    • /
    • 1993
  • The measurements of monochromatic line-of-sight flame emission and light transmission in the same path having small spatial resolution were performed in an axisymmetric laminar propane $C_{3}H_{8}$ diffusion flame. The light wavelengthes of 632 nm, 800nm, 900nm were used. From these measurements, local point soot radiances (by Kirchhoff's law) and absorption coefficients were reconstructed by tomography. Thus local point soot temperatures and concentrations were obtained. The reconstructed soot temperatures and concentrations of local points have no differences between the case of visible range (632 nm) and the case of infrared range (800 nm and 900 nm). In these ranges, the scattering coefficient is much lower than the absorption coefficient. Soot mean temperature over the path also matches well with local soot temperature in outer region of the flame. Temperature measurement by thermocouple with different bead diameters $(222{\mu}m and 308{\mu}m)$ was carried in the same flame. Rapid insertion technique was used and radiation effect was considered. Radiation correction in the sooting region was carried out and the corrected result was in good agreement with the local soot temperature.

Measurement of soot concentration in flames using laser-induced incandescence method (레이저 가열 측정법을 이용한 화염 내 매연 농도 측정)

  • Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Laser induced incandescence, LII, recently developed technique for measuring soot concentration in flames, can overcome most of limitations of conventional laser extinction measurement. In this study, experiments were performed to investigate the effect of laser intensity, detection wavelength, and also laser beam quality on both LII signal at a particular position and peak-to-centerline LII signal ratio. The results of LII signal with increasing laser intensity shows its near-independence of laser intensity once threshold level of laser intensity has been reached. However, this near-independence depends on laser beam quality and the incident optical setup. The peak-to-centerline LII signal ratio slowly but continuously increases with laser power. This fact is due to the dependence of LII signal on particle mean diameter. LII signal is attenuated during it passes through the flame containing soot particles. The attenuation rate is inversely proportional to detection wavelength. In this study, LII signal at 680 nm band is 10% greater than the signal at 400 nm band.

  • PDF

WSR Study of Particle Size, Concentration and Chemistry Near Soot Inception (WSR 초기매연 조건에서의 입자 크기, 농도 및 화학적 특성)

  • Lee, Eui-Ju;Mulholland, George W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1117-1123
    • /
    • 2004
  • The characteristics of soot near the soot inception point for an ethene-air flame was carried out in a WSR (well-stirred reactor). The new sampling tool like the temperature controlled filter system was introduced to minimize the condensation during sampling. The new analysis tools applied include the real time size distribution analysis with the Nano-DMA, particle size by transmission electron microscopy, C/H analysis, g filter analysis, and thermogravimetric analysis using both non-oxidative and oxidative pyrolysis. The WSR can generate young soot particles that can be collected and examined to gain insight into inception. For the current conditions, soot does not form for ${\Phi}$=1.9, inception occurs at or before ${\Phi}$=2.0, and inception combined with soot surface growth and/or coagulation occurs for ${\Phi}$=2.1. The filter samples for ${\Phi}$=1.9 are composed of volatile compounds that evolve at relatively low temperatures when heated in the presence or absence of O$_2$. The samples collected from the WSR at ${\Phi}$=2.0 and ${\Phi}$=2.1 are precursor-like in morphology and size. They have higher C/H ratios and lower organic percentages than precursor particles, but they are clearly not fully carbonized soot. The WSR PAH distribution is similar to that in young soot from inverse flames.

Measurements of Soot Volume Fraction Using Laser Induced Incandescence (레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정)

  • Lee, Seung;Lee, Sang-Hup;Lee, Byeong-Jun;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.

Effects of the Smoke Reduction of Diesel Engine Operated with Ultrasonically Reformed Fuel (디젤기관의 매연저감에 미치는 초음파 영향)

  • Lee, Byoung-Oh;Kim, Yong-Guk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.88-94
    • /
    • 2010
  • In this paper, the effect of the ultrasonic energy on the diesel engine's smoke reduction has been investigated for indirect injection diesel engine. The smoke concentration of the ultrasonically reformed diesel fuel was reduced remarkably in comparison with conventional diesel fuel. And in-cylinder pressure, heat release rate and mass fraction burned was improved but combustion duration was decreased. However, The combustion durations and the smoke concentrations of both diesel fuels were proportional to the increases of engine loads. Also, When the combustion duration has been increasing, the smoke emission has been augmenting in the shape of the exponential functions.

A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines (디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

A basic study for thermal performance improvement of domestic oil boiler (家庭용 油類 보일러의 熱性能 向上에 관한 基礎設計 硏究)

  • 정진도;이은모;류정인
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.31-41
    • /
    • 1995
  • 본 연구에서는 일반 가정에서 많이 쓰이고 있는 15,000 Kcal/hr용량의 유류 보일러에 대한 제반 실험을 통하여 보일러 운전자료를 제공함은 물론 방열코일의 열교환 실험을 통하여 시중에 유통되고 있는 방열코일의 방열량 비교와 공기와 냉각수와의 열관류율을 비교함으로서 보일러 시공에 필요한 기초 자료를 얻었다. 연소에 필요한 급기량은 매연농도가 문제시 되지 않는 Smoke Scale No.가 1 이하인 공기비 1.45 이상으로 운전이 되어야 하며 송수온도는 t2=-0.0781XGw+85($^{\circ}C$)의 실험식으로 표시할 수 있다. 공기중에서 코일의 방열량은 X-L관이 외경의 차이로 인해 동관보다 높게 나타났다.

  • PDF

Measurements of sooting in single droplet combustion under the normal-gravity condition (정상 중력장하의 단일 액적연소에 있어서 매연 농도의 측정)

  • Lee, Gyeong-Uk;Lee, Chang-Eon;O, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • The temporal and spatial distributions of soot volume fractions were measured for single toluene droplet flames as a function of pressure under the normal-gravity condition. In order to characterize the transient nature of the flame and sooting regions, a full-field light extinction and subsequent tomographic inversion technique was used. The reduction in sooting as a function of pressure was assessed by comparison of the maximum soot volume fractions at several vertical positions along the axis above the droplet. The maximum soot volume fraction was reduced by 70% when the pressure was reduced by 60% from 1 atm to 0.4 atm. The reduction in sooting is attributed to variation of the geometric configuration of flame which reduces the system Grashof number as well as only the change in the adiabatic flame temperature as the pressure decreases. The gravimetrically-measured total soot yield was also compared to the optically-measured soot volume fraction to obtain a correlation between the two measurements. As a result, the total soot yield was linearly proportional to the optically-measured maximum soot volume fraction and linearly reduced as the pressure decreased. Accordingly, the non-intrusive full-field light extinction-measurements were able to be calibrated not only to measure soot volume fraction, but to simultaneously evaluate the total soot yield emitted from the toluene droplet flame (which is useful in the practical application).

Smoke Characteristics of a Small Scale Pool Eire (작은 풀화재에서의 연기 특성)

  • Lee Eui-Ju;Ahn Chan-Sol;Shin Hyun-Joon;Oh Kwang-Chul;Lee Uen-Do
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.58-63
    • /
    • 2005
  • Experimental measurements of flames and the product properties were performed for small kerosene pool fires. which is widely used as a fire source of laboratory scale experiments with scaling modeling. The flame length and flickering frequency were investigated for the flame structures, and compared with the theory. Three measurement methods were introduced to clarify the smoke characteristics, i.e. various gas concentrations, smoke density and thermophoretic sampling with transmission electron microscopy (TEM). The yield of carbon dioxide and the consumption of oxygen were proportional to the heat release rate of pool fires, but there is no trend on carbon monoxide emission. Smoke density of turbulent flames was exponentially increased with the heat release rate. The morphology of the soot particle was investigated to address the degree of soot maturing. The results show that the similar smoke morphology between an inverse jet flame and a pool fire exists despite of different combustion controlling mechanisms.

An Experimental Study on the Emission Characteristics of Smoke from the Marine Four-Stroke Diesel Engines Operated in Constant Speed and Various Load Steps (선박용 4행정 디젤엔진의 정속 부하변동 운전시 매연배출특성에 대한 실험연구)

  • Oh, Sang-Hoon;Kim, Jae-Min;Kim, Hyun-Kyu;Yoo, Bong-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.19-20
    • /
    • 2006
  • The emission of particulate matter from marine diesel engines is already restricted by regional regulations in some countries, and IMO has been preparing the regulation for particulate matter from 53rd MEPC. But confusingly, the gravimetric PM measurement methods and procedures are not established clearly yet. On the other hand, smoke measurement method is set clearly, and it can also indicate PM, though it is not direct gravimetric method. As the preparing step for regulations about PM, we measured the smote density of exhaust emission from the marine four-stroke diesel engines operated in constant speed and various load steps on the test-bed, using the filter-type smoke measuring instrument. As a result, we understood the omission characteristics of smoke from the engines. Additionally, to obtain the objective reliability of our measurement data, we carried out experimental studies about various measuring parameters that could affect the smoke density.

  • PDF