• Title/Summary/Keyword: 매립가스

Search Result 267, Processing Time 0.024 seconds

A Study to Increase Methane Ratio of Landfill Gas by Capturing Carbon Dioxide (매립지가스의 메탄 비율 증가를 위한 이산화탄소 포집 연구)

  • Bada Kim;Junghyun Park;Sungwoon Choi;Youngchul An;Daeyup Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.25-31
    • /
    • 2023
  • The purpose of this study is to increase the thermal efficiency of a landfill gas (LFG) power generation engine by capturing carbon dioxide (CO2) from landfill gas (LFG) using monoethanolamine (MEA), which is widely used in the chemical CO2 absorption process. Since the use of LFG as an energy source can be a means of reducing greenhouse gas emissions, MEA can be used to reduce CO2 in LFG and increase the concentration of CH4 to improve the efficiency of power generation. In this study, experiments were conducted to measure the solubility of CO2 and CH4 in MEA solution, increase the solubility under different conditions, and analyse the dissolution characteristics. It was found that the CO2 absorption rate increased as the ratio of MEA to reaction gas increased. There is an optimum MEA concentration to maximise CO2 solubility, and even if the concentration is increased above this concentration, the solubility does not improve significantly. This study provided fundamental work to develop a more practical fuel by capturing CO2 from LFG and increasing the concentration of CH4 while reducing greenhouse gas emissions.

LPG Cavern in Inchon, Korea (인천 LPG 수입기지 현장)

  • 김동규;오두환;정찬균
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.267-280
    • /
    • 1999
  • 인천 남동공단에서 약 9Km 떨어진 해상에 준설, 매립하여 조성된 3만평의 인공섬에 위치한 인천 LPG 수입기지 현장은 인천광역시와 수도권 지역에 민수용 LPG의 안정적인 공급을 하기 위하여 건설되는 LPG저장용 지하동굴 공사 현장이다. 저장 용량은 Propane가스 17만톤($34만5천\textrm{mm}^3$), Butane가스 7만톤($12만5천\textrm{mm}^3$) 이다. 지하저장시설은 대용량의 액화가스를 주변환경을 해치지 않으면서 화재나 전쟁, 지진등 재해로부터 안전하게 보호 하는데 가장 경제적이고 효율적이며, 운전 및 유지 보수 비용이 적게 드는데다 국토의 효율적인 활용과 공사비가 저렴하다는 장점을 갖고 있다.(중략)

  • PDF

국내 A 쓰레기 매립장의 침출수에서 보여지는 동위원소 특성

  • 이광식;김을영;신동복;유동준;엽병우;고경석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.455-457
    • /
    • 2004
  • 환경동위원소 기법을 쓰레기 매립장의 침출수 및 주변 지하수에 적용해본 결과 미생물의 활동에 의한 유기물의 분해과정에 대한 정보를 얻을 수 있었다. 특히 유기물 분해로 생성된 이산화탄소는 일차적으로 침출수의 알칼리도를 높이고 이차적으로 일어나는 이산화탄소의 환원작용에 의하여 메탄가스가 형성되었다. 이러한 과정에서 침출수에 잔류하는 용존무기탄소(DIC)의 탄소 동위원소 조성이 크게 부화되었으며, 아울러 생성된 메탄과의 수소동위원소 교환반응에 의하여 물의 수소 동위원소 조성이 크게 부화되는 특징이 국내에서 처음 관찰되었다.

  • PDF

A Suggestion for the Burning Velocity Correlation of LFG Mixed Gas Using Numerical Simulation (수치계산을 이용한 LFG 혼합가스의 연소속도 상관식 도출)

  • Lee, Chang-Eon;Oh, Chang-Bo;Jung, Ik-San;Jeong, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.906-912
    • /
    • 2000
  • In this study, for the use of LFG, the burning velocities of LFG and LFG mixed fuels have been numerically analyzed. C3 reaction mechanism which consists of 92 species and 621 reaction was adopted in the calculation. The results show that the burning velocities of LFG and LFG mixed fuels are obtained as a function of $CH_4$ and LFG percentage at stoichiometric conditions. In addition, the correlations of burning velocities LFG and LFG mixed fuels were obtained over a wide range of the equivalence ratio. The comparison of burning velocity correlated from numerically calculated results with experimental ones shows good agreements. From these results, the suggested burning velocity correlations far LFG and LFG mixed fuels in this study can be applied to the practical utilization of LFG.

  • PDF

Groundwater Contamination at the Seokdae Waste Landfill Area of Pusan City (부산 석대 폐기물 매립장 일대의 지하수 오염)

  • 정상용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Wastes produce groundwater contamination, offensive odor, and hazardous gases. This study investigates the contamination of groundwater at the Seokdae waste landfill area and seeks the desirable ways to minimize the groundwater contamination. Groundwater levels, water chemistry and aquifer characteristics of wells were examined around the Seokdae waste landfill. The water chemistry of the Dong stream, the groundwater distribution and flow were also studied. The results of this research show that the estimated quantity of the percolation from the landfill base to the ground is 520 ㎥/day and the extent of groundwater contamination is about 1-1.5 km from the center of the waste landfill. The groundwater contains heavy metals and other toxic elements. The conservation and management of the groundwater of the waste landfill need several monitoring wells to check the quantity and quality of groundwater, pumping wells to extract the contaminated groundwater, and slurry walls to protect the movement of contaminated groundwater.

  • PDF

Analysis of the Relationship between the Seasonal Temperature Change and the Electrical Resistivity Value of Landfill Site (매립지의 계절별 온도변화와 전기비저항값의 상관성 분석)

  • Sim, Nak Jong;Ryu, Don Sik;Kim, Chang Gyun;Lee, Chul Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.534-541
    • /
    • 2017
  • The bioreactor type of landfill is to operate to enhance waste decomposition by continuously supplying water such as leachate and wastewater within the landfill, which helps increase the landfill gas production, which in turn prematurely stabilize the landfill. Recently, the environmental law for the operation of the bioreactor type of landfill has been enacted and thereafter the bioreactor type of landfill has been introduced for the first time in Korea to the SUDOKWON landfill site. In order to properly apply for bioreactor to the landfill, it is necessary to investigate the water distribution inside the landfill so that water recirculation should be optimally allocated with the zone of concern. In this regard, electrical resistivity survey has been suitably performed to delineate the water distribution in the landfill. That is, it has surveyed for long-term of period that the recirculation of leachate has been properly reflected from electrical resistivity within the second landfill of SUDOKWON landfill site. As a result, the electrical resistivity immediately corresponded to the variation of the extent of the seasonal temperature dynamics. From this, a calibratrion could be accomplished by correlating between temperature and electrical resistivity obtained from this study that can be applicable for optimally monitoring to keep the ideal operating condition for the bioreactor type of landfill.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (III) - Torch Ignition (1) - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (III) - 토치 점화 (1) -)

  • Kim, Inok;Ohm, Inyong;Kwon, Soon Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • This is the third paper on the combustion characteristics of the landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine. It is the first in this series to discuss the effects of the torch device on combustion. The results show that an optimum orifice ratio exists regardless of the torch volume, and a few adverse effects on the combustion are observed for an excessively small orifice ratio. In addition, the torch ignition decreases the initial burn duration, and the decrease in the heat transfer caused by this decreased duration contributes to an increase in the peak combustion pressure. Finally, the torch mostly plays a positive role in shortening the main burn duration when the combustion condition is worsened by a lower methane fraction. Yet, the torch decreases the initial burn duration rather than the main burn as the methane fraction increases.

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

A Fundamental Study on Biogas from Municipal Solid Waste (도시(都市) 폐기물(廢棄物)로부터 Biogas 생산(生産)에 관한 기초적(基礎的) 연구(研究))

  • Choi, Eui So;Lee, Jung Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.31-40
    • /
    • 1987
  • To evaluate the fundamental factors in the recovery of biogas from the landfills composed of about 40% of volatile solids, the experiments for the samples from the operating landfill site as well as from the laboratory-scale lysimeter were undertaken. In the test of landfills, the change of moisture content, the content of volatile solids (VS), the ratio of saccharide to ligin(Y) and the estimation of landfills reclaimed and the correlationship between VS and Y were investigated. During the experiments with laboratory-lysimeter, temperature, pH, gas production rate, the composition of gas were measured. The mathematical model derived from the the rate coefficient of gas production(k) were proposed from the results of this investigation. Furthermore, the proposed mathematical model from this study was verified with the obtained values from experiments.

  • PDF