• Title/Summary/Keyword: 망간코팅

Search Result 25, Processing Time 0.029 seconds

Oxidation of Methane and Reduction of Ammonia using Mn Catalysts (망간 촉매를 이용한 메탄과 암모니아의 산화 및 환원)

  • Jang, Hyun-Tae;Lee, Ji-Yun;Kim, Hyeon-Jeong;Wagle, Roshan;Kim, Sun-Woo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.902-905
    • /
    • 2009
  • 축사 또는 쓰레기장에서 에서 발생되는 있는 물질인 암모니아, 아민, 메탄, 탄화수소류 등에 대한 처리를 위한 촉매 개발을 수행하였다. 암모니아를 금속산화물형태의 촉매를 사용하여 산화하였을 경우 $N_2$, NO, $NO_2$, $N_2O$가 일정 비율로 생성되게 된다. 이때의 NO, $NO_2$는 악취는 발생하지 않으나 유독성 가스이므로 이에 대한 선택성이 낮은 촉매를 선별하고 온도에 따른 활성능을 시험하여 최적의 촉매조성을 도출하였다. 다양한 산화가를 지닌 망간을 대상으로 각종 조촉매의 혼합에 따른 실험을 수행하여 최적 조성을 도출 하였다. 촉매 선별작업에서는 충전층을 사용하고, 선별된 촉매에 대하여 모노리스에 코팅하여 사용할 수 있는 모노리스형태의 반응기를 장착하여 모노리스 형태 촉매의 반응성 및 피독특성을 실험하였다.

  • PDF

Removal of As(III) by Pilot-Scale Filtration System Separately Packed with Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사를 분리 충진시킨 파일럿 여과시스템에 의한 3가 비소 제거)

  • Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.878-883
    • /
    • 2006
  • Removal efficiency of As(III) was investigated with a pilot-scale filtration system packed with an equal amount(each 21.5 kg) of manganese-coated sand(MCS) in the bottom and iron-coated sand(ICS) in the top. Height and diameter of the used column was 200 cm and 15 cm, respectively. The As(III) solution was introduced into the bottom of the filtration system with a peristaltic pump at a speed of $5{\times}10^{-3}$ cm/s over 148 days. Breakthrough of total arsenic in the mid-sampling position(end of the MCS bed) and final-sampling position(end of the ICS bed) was started after 18 and 44 days, respectively, and then showed a complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position was started after 18 days, the concentration of As(III) in this effluent was below 50 ppb up to 61 days. This result indicates that MCS has a sufficient oxidizing capacity to As(III) and can oxidize 92 mg of As(III) with 1 kg of MCS up to 61 days. When a complete breakthrough of total arsenic occurred, the removed total arsenic by MCS was calculated as 79.0 mg with 1 kg MCS. As variation of head loss is small at each sampling position over the entire reaction time, it was possible to operate the filtration system with ICS and MCS for a long time without a significant head loss.

Evaluation of Mn Removal Efficiency from the Mine Drainage in the Presence of Fe Using Slag Complex Reactors (제강슬래그 복합매질체를 이용한 철 유입에 따른 광산배수내 망간 제거효율 평가)

  • Kim, Dong-Kwan;Ji, Won Hyun;Kim, Duk-Min;Park, Hyun-Sung;Oh, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.401-407
    • /
    • 2018
  • For the treatment of heavy metals in the mine drainage from the closed mine area, various methods such as passive, active and semi-active treatments are considered. Among contaminated elements in the mine drainage, Mn is one of the difficult elements for the treatment because it needs high pH over 9.0 for its concentration to be reduced. In this study, the efficiency of various slag complex reactors (slag (S), slag+limestone (SL) and slag+Mn coated gravel (SG)) on Mn removal in the presence of Fe, which is a competitive element with Mn, was evaluated to investigate effective methods for the treatment of Mn in mine drainage. As a result of experiments on Mn removal without Fe during 358 days, using influent with $30{\sim}50Mn{\cdot}mg/L$ and pH 6.7 on the average, S reactor showed continuously high Mn removal efficiency with the average of 99.9% with pH 8.9~11.4. Using the same reactors, Mn removal experiments with Fe during 237 days were conducted with the influent with $40{\sim}60Mn{\cdot}mg/L$. The pH range of effluent reached to 6.1~10.0, which is slightly lower than that of effluent without Fe. S reactor showed the highest range of pH with 7.1~9.9, followed by S+L and S+G reactor. However, the efficiency of Mn removal showed S+L>S>S+G with the range of 94~100%, 68~100% and 68~100%, respectively in spite of relatively low pH range. S+L reactor showed the most resistance on Fe input, which means other mechanisms such as $MnCO_3$ formation by the carbonate prouced from the limestone or autocatalysis reaction of Mn contributed to Mn removal rather than pH related mechanisms. The evidence of reactions between carbonates and Mn, rhodochrosite ($MnCO_3$), was found from the X-ray diffraction analysis of precipitates sample from S+L reactor. From this study, the most effective reactors on Mn removal in the presence of Fe was S+L reactor. The results are expected to be applied for the Mn containing mine water treatment in the presence of Fe within the relatively low range of pH.

The Response Characteristics of the Hydrogen Peroxide Monopropellant Thruster as Active Materials (활성물질에 따른 과산화수소 추력기의 응답 특성)

  • An, Sung-Yong;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.26-34
    • /
    • 2008
  • The performance of several catalysts to decompose the high test peroxide (HTP) was described in this paper. Manganese oxide, Platinum and Iridium were coated on the gamma alumina. The catalyst activity as active materials was measured at the flask reactor. The response time of various catalysts was also measured with a 50 Newton class thruster. $Ir/Al_2O_3$ that showed the best activity in the flask reactor and response time at the thruster, failed the reaction when continuous mode test was carried out with the thruster. $Pt/Al_2O_3$ and $MnO_2/Al_2O_3$ can be substitutes to decompose the HTP. In addition, for larger thruster, $MnO_2/Al_2O_3$ can be a good catalyst because its cost is below 5 % of $Pt/Al_2O_3$.

Preparation and Characterization of New Conversion Coating Solutions for Good Corrosion Resistance on Magnesium Plate (마그네슘판재의 고내식 화성처리 용액제조 및 특성 고찰)

  • Jeong, Yong-Gyun;Lee, Jae-Ryung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.114-114
    • /
    • 2009
  • 마그네슘은 실용금속 중에서 열역학적으로 가장 활성이 큰 부류에 속하며, 그 표준적극전위는 -2.363VNHE (NHE: 수소표준전극기준)으로 대기중에서 표면부터 신속하게 산화되는 내식성에 큰 취약점을 가지고 있어, 내식성과 낮은 표면전기저항성을 갖는 마그네슘판재용 화성처리를 제안하기 위해 망간-인산염, 바나듐, 세륨, 불화 실리콘 등의 화합물로 구성되는 여러 가지의 화성처리용액을 제조한 뒤 침지처리시간을 달리하는 방법으로 마그네슘판재를 코팅하였다. 코팅된 시편을 이용하여 색상과 광택, 표면전기저항, 내식성 등에 대한 특성을 고찰하였다.

  • PDF

Developing for Reduction Technology of AMD through Coating on the Surface of Pyrite Using Minerals (천연광물을 이용한 황철석 표면 코팅을 통한 폐광산 산성배수 저감 기술 개발)

  • Yun, Hyun-Shik;Gee, Eun Do;Ji, Min Kyu;Lee, Woo Ram;Yang, Jung-Seok;Park, Young-Tae;Kwon, Hyun-ho;Ji, Won-Hyun;Kim, Kijoon;Jeon, Byong-Hun;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2011
  • In this study, the effect of surface coating on iron-sulfide mineral for preventing the product acid mine drainage(AMD) was progressed by oxidation process of sulfide minerals abandoned mine Area. Three abandoned mines, Yongdong coal mine, Sil Lim mine, and Il Koang mine were selected as a sulfide mineral resource due to higher contamination rate. Six coating agents, apatite, limestone, mangnite, dolomite, bentonite, and cement were used for preventing the AMD with $H_2O_2$ and NaClO as a oxidizing agent helping for oxidizing process on sulfide minerals. Experimental results showed that sulfide mineral surface was coated effectively. Cement has a higher ability of preventing AMD when the ratio of cement to mineralis 1:1 and experimental condition is maintaining 4Days.

Performance Evaluation of Hydrogen Peroxide Vaporizer with $K_2MnO_4/Al_2O_3$ Catalyst ($K_2MnO_4/Al_2O_3$촉매를 이용한 과산화수소 기화기의 성능평가)

  • Rang Seong-Min;An Sung-Yong;Kwon Hyuck-Mo;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.329-334
    • /
    • 2005
  • The rocket grade hydrogen peroxide has been widely used as a monopropellant in propulsion systems. Conventional decomposition of hydrogen peroxide, however, requires preheating before feeding into the reactor. In the present paper, we described an experimental study of a catalytic reactor bed that employs multiple catalysts to enhance the low temperature response in the vicinity of the reactor inlet. $K_2MnO_4$ is experimentally chose as the inlet catalyst from the candidates of silver, platinum, $La_{0.8}Sr_{0.2}CoO_3(LSC),\;and\;K_2MnO_4$. We developed new synthesis and coating method using modified alumina sol-gel method to strengthen the adhesion of $K_2MnO_4$ catalyst. from the vaporizer experiment with hydrogen peroxide at room temperature, satisfactory vaporizing performance was measured.

  • PDF

플렉서블 소자 응용을 위한 전기화학증착법을 이용한 금속산화물 나노복합구조 형성 및 제어

  • Go, Yeong-Hwan;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.160-160
    • /
    • 2012
  • 산화아연, 산화니켈, 산화망간 등 금속산화물은 전기적, 광학적 및 화학적 특성이 우수하여 태양전지, 연료전지, 광촉매, 가스센싱 등 다양한 분야에 폭 넓게 활용되고 있다. 또한, 그 성장방법에 따라 다양한 형태와 크기를 제어할 수 있으며 각각의 응용되는 분야에서 요구되는 나노구조를 최적화할 수 있는 장점을 갖고 있다. 그 중, 전기화학증착법(electrochemical deposition method)은 기존의 제작방법에 비해서 간단한 공정과정과 저온성장이 가능하기 때문에 많이 사용하고 있으며, 씨드(seed)층의 형성을 통해서 원하고자하는 부분에 성장시킬 수 있다. 한편, 나노기술의 발전과 함께 IT기술이 일상생활에 밀접해지면서 구부리거나 휴대 또는 입을 수 있는 다양한 전자 및 광전자 소자의 기술 개발이 활발하게 이루어지고 있는데, 이와 더불어 다양한 금속산화물 여러 가지 플렉서블 기판에서의 나노구조의 성장 및 제어에 대한 연구가 시도되고 있다. 본 연구에서는, 전기화학증착법을 이용하여 전도성 섬유와 ITO/PET 기판을 포함한 다양한 플렉서블 기판에 산화아연, 산화니켈, 산화망간의 나노구조물을 제작하였다. 실험을 위해, 용액의 농도, 시간, 인가전압을 바꿔가면서 성장조건을 달리하여 다양한 형태와 크기의 금속산화물의 나노복합구조를 형성 및 제어를 할 수 있었다. 또한, 스퍼터링 또는 스핀코팅을 이용하여 다양한 유연기판에 씨드층을 형성함으로써 금속산화물 나노구조를 균일하고 조밀하게 성장시킬 수 있었다. 플렉서블 광전소자 응용을 위해 다양한 형태로 제작된 샘플의 결정구조와 형태, 광학적 특성, 표면특성과 같은 물리적 특성을 조사하였다.

  • PDF

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition (Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가)

  • Im, Jinsol;Ahn, Jinhyeok;Kim, Jungmin;Sung, Shi-Joon;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.60-68
    • /
    • 2019
  • High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.

Comparison of Heavy Metal Adsorption by Manganese Oxide-Coated Activated Carbon according to Manufacture Method (활성탄-망간 산화물 합성소재의 제조방법에 따른 중금속 흡착특성 비교)

  • Lee, Seul Ji;Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The adsorption characteristics of Pb(II) and Cu(II) by the manganese oxide-coated activated carbon (MOAC) were investigated by series of batch experiments. MOAC was prepared by three types of manufacturing methods such as chemical precipitation method (CP), hydrothermal method (HT) and supercritical method (SC). Pseudo-second-order and Langmuir models adequately described kinetics and isotherm of Pb(II) and Cu(II) adsorption on the experimented adsorbents. These results indicated that heavy metal ions were chemically adsorbed onto uniform monolayered adsorption sites. The coating of manganese oxide enhanced the adsorption capacities of AC. And adsorption capacities of Pb(II) and Cu(II) were significantly affected by the manufacturing method of MOAC. The highest adsorption performance was obtained by using SC, followed by HT and CP, which is caused from high uniformity and amount of manganese oxide coated onto AC induced by high temperature and pressure. These results show that MOAC can be used as an effective adsorbent to remediate heavy metal contaminated environment.