• Title/Summary/Keyword: 막장면

Search Result 84, Processing Time 0.025 seconds

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.

New tunnel reinforcement method using pressurized cavity expansion concept (천공홀 가압 팽창 개념을 도입한 터널 보조 신공법 연구)

  • Cho, In-Sung;Park, Jeong-Jun;Kim, Jong-Sun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.407-416
    • /
    • 2010
  • A new tunnel auxiliary method is proposed in this paper which utilizes the concept of cavity expansion for tuunel reinforcement by forming an umbrella arch on the roof of tunnel. When an inflatable pipe is inserted and expanded by pressure in the bore hole of umbrella arch, the ground around the bore hole can be compacted so that the stress condition above the tunnel perimeter is favorably changed. In order to verify the reinforcement effect of new concept, pilot-scale chamber test, trapdoor test and numerical analysis were performed and compared. In pilot-scale chamber test, three types of inflatable pipes are tested to verify the capability of expansion, and the results arc compared with analytical results obtained by applying cavity expansion theory and with results obtained from finite clement analysis, and the experimental results showed agreeable matches with analytical and numerical ones. Numerical analysis of a tunnel and trapdoor test applied with the inflatable pipes are also performed to figure out the reinforcement effect of the proposed techniques, and the results implied that the new method with 3 directional inflatable pipe (no pressure to downward direction) can contribute to reduce tunnel convergence and face settlement.

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

Study on the Occurrence of Tunnel Damage when a Large-scale Fault Zone Exists at the Top and Bottom of a Tunnel (대규모 단층대가 터널 상하부에 존재하는 조건에서 터널 변상 사례 연구)

  • Jeongyong Lee;Seungho Lee;Nagyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, along with the improvement of high-speed rail and road design speed, the proportion of tunnel construction work is increasing proportionally. In particular, the construction of long tunnels is rapidly increasing due to the mountainous terrain of our country. In this way, due to the trend of tunnels becoming longer, it is difficult to design and construct tunnels by avoiding fault zones. In the case of tunnel construction in mountainous areas, ground investigation is often difficult even during design due to the topographical conditions, making precise ground investigation difficult, and as a result, the upper part of the tunnel is damaged during tunnel construction. When fault zones, which are vulnerable to weathering, exist, the stability of the tunnel during excavation is directly affected by the fault zone distribution, strength characteristics, and groundwater distribution range. In particular, when a fault zone is distributed in the upper part of a tunnel, damage such as tunnel collapse and excessive displacement may occur, and in order to prevent this in advance, countermeasures must be established through analysis of similar cases. Therefore, in this study, when a large-scale fault zone exists in the upper part of a tunnel, the relationship and characteristics of damage to the tunnel structure were analyzed.

Derivation and verification of electrical resistivity theory for surrounding ground condition prediction of TBM (TBM 주변 지반상태예측을 위한 전기비저항 이론식 유도 및 검증)

  • Hong, Chang-Ho;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Since the depth of tunneling with tunnel boring machine (TBM) becomes deeper and deeper, the expense for site investigation for coring and geophysical survey increases to obtain the sufficient accuracy. The tunnel ahead prediction methods have been introduced to overcome this limitation in the stage of site investigation. Probe drilling can obtain the core and borehole images from a borehole. However, the space in TBM for the probe drilling equipment is restricted and the core from probe drilling cannot reflect the whole tunnel face. Seismic methods such as tunnel seismic prediction (TSP) can forecast over 100 m ahead from the tunnel face though the signal is usually generated using the explosive which can affect the stability of segments and backfill grout. Electromagnetic methods such as tunnel electrical resistivity prospecting system (TEPS) offer the exact prediction for a conductive zone such as water-bearing zone. However, the number of electrodes installed for exploration is limited in small diameter TBM and finally the reduction of prediction ranges. In this study, the theoretical equations for the electrical resistivity survey whose electrodes are installed in the face and side of TBM to minimize the installed electrodes on face. The experimental tests were conducted to verify the derived equations.

Prediction of the Fractures at Inexcavation Spaces Based on the Existing Data (터널의 굴착면 전반부에 분포하는 절리의 예측)

  • Hwang, Sang-Gi
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.643-648
    • /
    • 2014
  • Understanding of fracture networks and rock mass properties during tunnel construction is extremely important for the prediction of dangers during excavation, and for deciding on appropriate excavation techniques and support. However, rapid construction process do not allow sufficient time for surveys and interpretations for spatial distributions of fractures and rock mass properties. This study introduces a new statistical approach for predicting joint distributions at foreside of current excavation face during the excavation process. The proposed methodology is based on a cumulative space diagram for joint sets. The diagram displays the cumulative spacing between adjacent joints on the vertical axis and the sequential position of each joint plotted at equally spaced intervals on the horizontal axis. According to the diagram, the degree of linearity of points representing the regularity of joint spacing; a linear trend of the points indicates that the joints are evenly spaced, with the slope of the line being directly related to the spacing. The linear points which are stepped indicates that the fracture set show clustered distribution. A clustered pattern within the linear group of points indicates a clustered joint distribution. Fractures surveyed from an excavated space can be plotted on this diagram, and the diagram can then be extended further according to the plotted diagram pattern. The extension of the diagram allows predictions about joint spacing in areas that have not yet been excavated. To test the model, we collected and analyzed data during excavation of a 10-m-long tunnel. Fractures in a 3-m zone behind the excavation face were predicted during the excavation, and the predictions were compared with observations. The methodology yielded reasonably good predictions of joint locations.

A Prediction Method for Ground Surface Settlement During Shield Tunneling in Cohesive Soils (점성토 지반에서의 실드 터널 시공에 따른 지표침하 예측 기법)

  • Yoo, Chung-Sik;Lee, Ho
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.107-122
    • /
    • 1997
  • This paper presents a ground surface settlement prediction method for shield tunneling in cohesive soils. In order to develop the method, a parametric study on shield tunneling was performed by using a threetimensional elasto-plastic finite element analysis, which can simulate the construction procedure. By using the results of the finite element analysis, the ground movement mechanism was investigated and a base which relates the ground surface settlement and iuluencing factors was formed. The data base was then used to formulate semi -empirical equations for both surface settlement ratio above tunnel face and imflection point by means of a regression analysis. Furthermore, a prediction method for transverse and longitudinal surface settlement profiles was suggested by using the leveloped equations in conjunction with the normal probability curve. Effectiveness of the developed method was illustrated by comparing settlement profiles obtained by using the developed method with the results of finite element analysis and measured data. Based on the comparison, it was concluded that the developed method can be effectively rosed for practical applications at least within the conditions investigated.

  • PDF

Case Study for the Improvement of Tunnel Advance Rate & the Time Reduction of Working Process in Long Hole Blasting About Tunnel Excavation (터널 장공발파에서 굴진율 개선 및 작업공정 시간 단축 사례)

  • Kim, Hee-Do;Lee, Jun-Won;Lee, Ha-Young
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.32-39
    • /
    • 2013
  • Generally, The way of long hole blasting is carried out in coal-face, basic excavation for dam, mine etc. Recently, this long hole blasting has been implemented in civil engineering for efficiency & economic feasibility. National express no.600 of Pusan outer high-express ${\bigcirc}$ construction site with four lanes of the length of 8km was also a site applied by long hole blasting. But After blasting, tunnel advance rate is less than 75%. As a result of that, Follow-up working time is influenced. Thereby, The total of working process is significantly so increased that planned excavation cannot be implemented many times. For not only improve excavation rate but reduce working process time in job site, we introduce blasting case which apply the ${\phi}36mm$ explosive suited for high desity of charging among long hole blasting in order to overcome mentioned problem.

Risk Of Buildings Damage Due To Subsidence During Tunnelling Under The Buildings In Sand-Gravel Layer (빌딩하부 모래자갈층에서 터널시공 중 발생한 지표침하에 의한 빌딩의 손상)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.383-396
    • /
    • 2015
  • It is analyzed the risk of building damage due to ground surface subsidence occurred during constructing a tunnel below buildings in sand-gravel layer. The overburden and the thickness of sand-gravel layer is about 20m and the width and the height of the tunnel are 12m and 8.6m, respectively. The tunnel is pre-reinforced by umbrella method with three rows of long steel pipes and grouting. Surface subsidence is measured at 36 points surrounding buildings and measured data are used to calculate optimized three dimensional subsidence surface. Depending on the building location, deflection ratio and horizontal strain are calculated to evaluate the risk of building damage. No damage occurs at the buildings because of both the small deflection ratios involved 1~4mm subsidence and compressive horizontal strains.

Study on the Convergence of the NATM Tunnel Constructed in the Weathered Granite (풍화 화강암 지반에 건설된 NATM터널에서의 내공변위 연구)

  • Shin, Sang-Sik;Kim, Hak Joon;Bae, Gyu Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.515-526
    • /
    • 2015
  • Predicting and measuring tunnel convergence is very crucial for estimating tunnel stability and economical construction of NATM tunnels. The method to estimate the tunnel convergence that occurs before and after construction is proposed based on literature reviews. The total displacement occurring related to tunnel construction is determined to be about 2.5 times that of measured displacements. The results of displacement measurements at two tunnels constructed with similar rock types are examined for the investigation of factors affecting the tunnel convergence. The average convergence of Gyungju A Tunnel is about 6.7 times bigger than that of Daejeon B Tunnel. The possible causes of the large convergence in Gyungju A Tunnel are suggested. In order to predict the convergence of tunnels, careful investigation of the geological structures in the ground surface and the influence of external conditions as well as careful face mapping of the tunnel face should be conducted.