• 제목/요약/키워드: 마케팅 활성화

검색결과 542건 처리시간 0.02초

스마트 전시환경에서 부스 추천시스템의 사용자 의도에 관한 조사연구 (Analyzing the User Intention of Booth Recommender System in Smart Exhibition Environment)

  • 최재호;상균영;문현실;최일영;김재경
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.153-169
    • /
    • 2012
  • 전시회는 새로운 상품이나 서비스를 현재 고객들과 미래의 잠재고객들에게 홍보하기 위해 개최하는 효과적인 마케팅 수단으로 중요하다. 기업들은 전시회에 참여를 통해 현재 고객 및 잠재고객들과 대면접촉을 함으로써 기업의 이미지 제고 및 새로운 판로를 확보할 수 있다. 이처럼 전시회의 경제적 중요성이 커짐에 따라, 전시주최자들은 참여기업 및 참관객을 유치하기 위하여 새로운 IT 기술을 전시회에 적용하고 있을 뿐만 아니라 연구자들 또한 참관객의 관람패턴을 분석하기 위하여 다양한 연구를 시도하고 있다. 최근에는 스마트 기술이 발전함으로써 전시 공간 내에서 참관객의 활동을 실시간으로 모니터링 할 수 있어 온라인 전시환경처럼 오프라인 전시회를 방문한 참관객의니즈를 실시간으로 추론하여 참관객의 선호에 적합한 서비스를 제공하기 위한 부스 추천시스템에 대한 연구가 활발히 진행되고 있다. 그러나 새로운 기술 개발 측면에서 시스템의 성능을 개선하려는 연구는 지속적으로 진행되어 왔으나 향후 시스템의 개발 방향 및 보급 활성화에 영향을 미치는 요인에 관한 연구들이 부족한 실정이다. 부스 추천시스템은 스마트 전시환경에서 새로 도입되는 기술로 부스 추천시스템에 대한 참관객의 수용 후 재사용 의도는 TAM 관점보다는 부스 추천시스템이 참관객의 선호에 적합한 추천정보를 제공하는가에 초점을 맞출 필요가 있다. 따라서, 본 연구에서는 기존 문헌 고찰을 통해 전시환경에서의 부스 추천시스템에 대한 참관객의 만족 및 재사용 의도에 영향을 주는 요인을 도출하여 연구모형을 설계하였다. 이를 통해 향후 스마트 전시환경에서 부스 추천시스템의 개발과 보급 전략에 있어 유용한 시사점을 제공하고자 하였다. 이러한 연구목적을 달성하기 위하여 2011년 11월 DMC 컬처 오픈 행사에서 부스 추천시스템을 사용한 참관객을 대상으로 설문조사를 실시하였고 회귀분석을 통해 가설을 검증하였다. 그 결과, 참관객의 만족에 영향을 미치는 요인은 부스 추천시스템의 효과성, 편의성, 추천품질, 의외성으로 나타났다. 또한, 부스 추천시스템에 대한 참관객의 만족은 재사용 의도 형성에 긍정적인 영향을 미치는 것으로 밝혀졌다. 본 연구가 가지는 의의는 다음과 같다. 먼저, 본 연구결과를 토대로 스마트 전시환경에서 부스 추천시스템에 대한 참관객의 지속적인 서비스 이용을 유도하기 위한 전략을 수립할 때 고려해야 할 주요한 요인을 실증연구를 통해 구체화시켰다는데 의의가 있다. 또한, 스마트 전시환경에서 부스 추천시스템이 성공적으로 도입 및 활용되기 위해서는 참관객의 수용 전후 차별화된 관리가 필요함을 본 연구결과를 통해 제시하였다.

빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계 (Design of Client-Server Model For Effective Processing and Utilization of Bigdata)

  • 박대서;김화종
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.109-122
    • /
    • 2016
  • 최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.