• 제목/요약/키워드: 마찰 힌지

Search Result 11, Processing Time 0.026 seconds

컴플라이언스 기구를 이용한 다축 나노 위치결정 시스템의 개발 : PART 1 설계 및 해석

  • 박성령;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.137-137
    • /
    • 2004
  • 최근, 나노 위치결정 시스템이 우주항공, 광통신, 의학 등 많은 분야에서 사용되고 있다. 이러한 나노위치결정 시스템에 있어서 가장 중요한 것은 안정성이다 열팽창과 가공에 의한 오차를 줄이기 위해 단일재료를 사용하고 대칭구조로 구성해야만 한다. 또한 나노 스케일의 분해능을 가지기 위해서는 스틱 슬립(stick-slip) 마찰이나 백래쉬(backlash) 기구가 없어야만 가능하다. 이러한 조건들을 만족하기 위해서 선행 연구자들은 유연힌지(flexure hinge)를 사용한 컴플라이언스 기구(compliance mechanism)를 제안하였고 이미 마이크로/나노 위치결정 시스템에 대한 연구와 개발이 이루어졌다.(중략)

  • PDF

A Study on the Development of Friction Hinge with Automatic Closed Function (자동 닫힘 기능을 갖는 마찰힌지 개발에 관한 연구)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • A friction hinge system which moves without power was designed and developed using the principle of friction force, which is caused by interference between the inner diameter of a silicon cap and the outer diameter of a cylindrical roller bearing with one-way rotation in a counterclockwise direction. The system was applied to the lid of buffet ware, which moved up by external force and moved down by gravitational force. However, design conditions which included a rotation angle of the hinge of more than 80 degrees and a closing time of more than 20 seconds were required when the lid of the buffet ware closed due to gravitational force. The design safety of the friction hinge body connected to the lid of the buffet ware from the hinge system was checked on the basis of structural, fatigue and thermal analyses. The material of the shaft, cap and flange among the hinge elements was changed to polyethylene from steel to reduce the weight of the friction hinge system. An injection molding simulation was performed and injection molds of the shaft, cap and flange were created. The weight of the hinge system was decreased from 805g to 219g.

A Study on the Stability and Mechanism of Three-Hinge Failure (Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.5-15
    • /
    • 2017
  • Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

Moment Evaluations of Gimbal Expansion Joints for Liquid Rocket Engine Propellant Pipes (액체로켓엔진 배관 김발 신축 이음 모멘트 평가)

  • Yoo, Jaehan;Moon, Ilyoon;Lee, Soo Yong;Choi, Chunghyeon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2013
  • The gimbal expansion joint for the pipe line of a liquid rocket engine undergoes high pressure and cyclic rotational displacement loadings. In present study, the moment analyses and tests of the internal-type gimbal expansion joint for the engine were performed. The moment components due to spring stiffness, friction and lateral force were obtained using a analytic method and their sums at low and high pressures were compared with the test results. Also, applying a $MoS_2$ dry film lubricant to the pin of a external hinge expansion joint, it is tested that the galling of the pin was removed and the friction coefficient was decreased for low pressures.

Development of Frictional Wall Damper and Its Analytical Applications in R/C frame Structures (벽식마찰감쇄기의 개발 및 R/C 골조구조물에의 해석적 적용)

  • 조창근;박문호;권민호;강구수;서상길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.718-725
    • /
    • 2002
  • A wall type friction damper is newly Proposed in this paper to improve the performance of R/C framed structures under earthquake loads. Although traditional dampers are usually placed as bracing members, the application ot bracing-type dampers into R/C structures is not as simple as those of steel structures due to the connection between R/C members and dampers and the stress concentration in connection region. Proposed damper is consisted of Teflon-sheet slider and R/C shear wall. The damper can also avoid stress concentration and reduce P-Δ effect. To evaluate the performance of proposed damper, nonlinear dynamic analyses are carried on 10 story and 3 bay R/C structures with numerical model for the damper. It is shown that the damper reduces the inter-story drifts and the time-historic responses; especially the damper prevents from forming plastic hinges on the lower columns.

A Study on Development of Pinhead Forming Process using Hinge Belt Typed Chipconveyor for Machine Tools (공작기계용 힌지벨트형 칩컨베이어 핀헤드 성형공정 개발에 관한 연구)

  • Park, Dong-Geun;Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • This paper presents an investigation into the pinhead forming process with the objective of finding the optimal forming conditions. In order to this, the orbital forming analysis of a heading MIG was carried out using the explicit finite element method. Relationships between temperature by forming of load and stresses, rake angle by forming final shape and stress distribution were investigated through analysises in order to find an efficient solution. As a result, the higher temperature and orbital rake angle were the better forming conditions.

Evaluating the Reaction Force of Office Chair Backrest for Different Joint Structures (사무용 의자의 조인트 구조에 따른 등판 반발력 분석)

  • Hyeong, Joon Ho;Kim, Sa Yup;Roh, Jong Ryun;Park, Seong Bin;Chung, Kyung Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.535-540
    • /
    • 2015
  • The location of the pivot between the backrest and seat pan of a reclining chair should be identical to the hip joint center to prevent unpleasant user experiences during tilting motion. However, mechanical friction occurs in the pin-in-slot joints that are installed under the seat pan as an alternative to the hinge joint. This reduces the reaction force between the backrest and the occupant's back when reclining and returning to an upright position, which causes the occupant's discomfort. In this study, bearings, rollers, and sliders were suggested as alternatives for the pin component, and the percentage of the reaction force on the backrest was measured while reclining the backrest and subsequently returning it to an upright position. The results show when bearings, rollers, and sliders were used for the pin-in-slot joint, the percentages of the reaction force were $59.7{\pm}10.3$, $47.2{\pm}13.6$, and $30.3{\pm}18.1$, respectively, indicating that the friction of the bearing was the lowest among the three pin components. Because the three alternatives have different manufacturing costs, synthetic judgment requires the consideration of not only mechanical friction but also user experience.

A Study on Estimation of Energy required for Fin Unfolding (공력면 전개에 필요한 전개 에너지의 추산에 관한 연구)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.283-292
    • /
    • 2009
  • Considering an integral equation governing the motion of unfolding fin, an algebraic equation was acquired to get estimated minimum deployment energy required for the successful fin unfolding under the given wind condition. To complete the integration of moment, some approximations had to be introduced particularly to frictional moment and aerodynamic damping for which deployment angular speed of the unfolding fin was modelled as a function of deployment angle only with assumed profile using expected maximum angular speed. Technique for the estimation of the minimum required deployment energy was finalized by introducing the ideal deployment angular speed representing work done by the fin unfolding device alone during fin unfolding and was confirmed by comparing results from simulation with various aerodynamic conditions and profiles of the hinge torque.

Behaviour of the Fretting Wear and Corrosion Characteristics on a Hinge Material (힌지재료의 부식특성 및 찰과마멸 거동)

  • Kwak Nam-In;Lim Uh-Joh;Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.39-44
    • /
    • 1999
  • In the study, corrosion characteristics under various corrosion environments(neutral solution, acid solution), for various hinge materials(SM20C, BsC3 and STC4H), were investigated by immersion test, and the behaviour of fretting wear under atmosphere was studied. In immersion test, corrosion potential of those materials showed to be noble in the sequence of $0.5\%HNO_3$> underground water> $0.5\%\;H_2SO_4$ solution, and potential of a sole material, except BsC3, was more noble than these of mixed materials. In same material SM20C, the fretting wear loss of rotary materials increased about 1.9 times to that of moving materials, because of surface hardening by frictional force.

  • PDF