• Title/Summary/Keyword: 마찰 저감

Search Result 163, Processing Time 0.027 seconds

Reduction of Friction Losses in Engine Piston and Cylinder (엔진 피스톤과 실린더 사이의 마찰 손실 저감)

  • Oh, Byoung-Keun;Cho, Nam-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.207-207
    • /
    • 2000
  • Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. The reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston and the cylinder have a high share at total engine friction. The present study uses PISDYN(by Ricardo) software to analyze the friction losses. The design parameters such as skirt profile, center of mass of the piston are shown to have key influences on the friction losses.

  • PDF

A Passively Growing Sheath for Reducing Friction of Linearly Moving Structures (리니어 구동 구조의 마찰 저감을 위한 수동형 성장 피복)

  • Seo, Hanbeom;Kim, Dongki;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.159-163
    • /
    • 2022
  • A linearly moving structure in the area where the friction force is dominant - such as ducts filled with grease in the nuclear power plant - experiences increase in friction since the contact surface gets larger as the structure proceeds. To solve this problem is critical for the pipe inspection robot to investigate further area and this makes the system more energy-efficient. In this paper, we propose a passively growing sheath that can be added to linearly moving structures using zipper mechanism. The mechanism enables the linearly moving structures to maintain rolling contact condition against external environment, which provides substantial reduction in kinetic friction. To analyze the effect of the mechanism's head shape, we establish a physical model and compare to the experimental results. Finally, we have shown that the passively growing sheath can be successfully applied to the pipe inspection robot for the nuclear power plant.

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.

Separation of Unburned Carbon from Coal Fly Ash Using and Electrocyclone (電氣빠이클론을 이용한 石炭灰 중 미연탄소 저감기술 開發)

  • 조희찬;김정윤
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.14-22
    • /
    • 2001
  • For the recycle of coal fly ash generated from power stations, we developed an electrocyclone system which can separate unburned carbon form coal fly ash, based on the fact that coarse fly ash particles contain higher amount of unburned carbon and unburned carbon particles are charged positively, and pure ash particles are charged negatively on contacting each other. Additionally, guide vanes were installed in the cyclone to control the cut size. Two types of electrode, stick and grid type, were designed to investigate the effect of electrode type. Results show that by introducing an electric field inside the cyclone, the yield increases by 5 to 15e1o. But the content of unburned carbon in the clean ash does not change significantly.

  • PDF

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

Evaluation of Isolation Mechanism of Teflon or Steel Slag-Type Seismic Foundation Isolation Systems (테프론 또는 제강슬래그를 활용한 기초형 지진격리장치의 면진 메카니즘 평가)

  • Son, Su Won;Kang, In-Gu;Pouyan, Bagheri;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.5-16
    • /
    • 2018
  • In this study, seismic performance of geotechnical seismic isolation system capable of primary seismic isolation in the ground was evaluated. 1-G shaking table test was used to assess the performance of Teflon or steel slag as geotechnical seismic isolation systems installed beneath superstructure foundation. Response acceleration and response spectra were analyzed considering different input motions. The results were compared with those of fixed foundation structure without seismic isolation system. The steel slag-type seismic isolation system showed significant reduction in acceleration. The teflon-type seismic isolation system did not show significant effects on acceleration reduction in low-to-moderate seismicity condition, but it did show better effects in case of strong seismic condition. As input motion was transferred to the upper mass, the response spectrum of the fixed foundation structure was amplified in the short period range. In contrast, the response spectrum of the structure with seismic isolation using teflon or steel slag amplified in the long period range. It is found that the change of periodicity and the friction characteristics between isolation materials and foundations affected acceleration reduction.

The development of MR damper control modules for a vibration and noise decrease in Washing machine system (세탁기 진동소음의 저감을 위한 MR 댐퍼 컨트롤 모듈 개발)

  • Son, Kyung-Min;Kim, Min;Kim, Gwan-Hyung;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.185-187
    • /
    • 2012
  • In this paper, the MR fluid damper to the application of the paramagnetic (paramagnetic) particles dispersed in the MR fluid inside the magnet current caused by the MR damper using the principles of the internal fluid delivery yield stress variation is characterized in Silky. In other words, the current strength of the MR fluid damper according to the internal friction coefficient varies phenomenon is to use. The MR fluid damper to control the MCU that you want to use Microchip's dsPIC chips, and current control in order to improve performance by using the PWM and UART communication to an external monitor to monitor the entire system was designed. In this study using MR fluid dampers and dsPIC chip dehydration process happens when a washing machine vibration and noise, vibration and noise reduction sikidorok washing machine protection systems are proposed.

  • PDF

An experimental study on the improving noise characteristic of hydraulic power unit (유압동력 발생장치의 소음특성 개선을 위한 실험적 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.638-643
    • /
    • 2013
  • Nowadays, the hydraulic power unit (HPU) has been increased its working pressure and enlarged its capacity in order to improve the performance of the hydraulic system, but it produces noise leveled around 110dB(A) during operation. Recently, due to the reinforcement of industrial safety regulations and the requirement of improving work environment, a separated HPU room is installed at outside or underground of the building as to reduce the noise from HPU, but there are also problems of power loss owing its fluid friction of pipe system and of deficient accessibility during its failure accident. In this study, experiment is performed to improve the noise characteristics with installing a soundproof chamber to minimize the power loss and exclude effectively the high leveled noise, which is generated during the power conversion of HPU.

Characteristics of Wall Pressure over Wall with Permeable Coating (침투성 코팅 처리된 벽면 주위의 벽 압력 특성)

  • Song, Woo-Seog;Shin, Seung-Yeol;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1055-1063
    • /
    • 2012
  • Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open-cell, urethane-type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber-frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low-frequency wall pressure spectral levels compared to a smooth wall.