• Title/Summary/Keyword: 마찰 스프링

Search Result 83, Processing Time 0.028 seconds

Study on Designing Recoil System with Friction Springs (마찰 스프링을 이용한 주퇴복좌기 설계 연구)

  • Kim, Young-Seon;Kim, Sung-Soo;Cha, Ki-Up;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.367-374
    • /
    • 2011
  • Friction springs have different characteristics while loading and un-loading. Because of these characteristics, they are utilized in impact systems. In this paper, the design of a recoil system with friction springs for use in a machine gun system has been presented. In order to determine the stiffness of a friction spring, equations of motion for a simple gun model with a recoil system have been derived. The impulse balance scheme has been adopted. On the basis of simulation results, the diameter of the friction spring has been determined.

A Smart Damper Using Magnetic Friction And Precompressed Rubber Springs (자력 마찰과 기압축 고무 스프링을 이용한 스마트 댐퍼)

  • Choi, Eun Soo;Choi, Gyu Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • This study proposes a new technology for a smart damper with flag-shaped behavior using the combination of magnetic friction and rubber springs. The magnet provides friction and, thus, energy dissipation, and the rubber springs with precompression contribute to present self-centering capacity of the damper. To verify their performance, this study conducts dynamic tests of magnet frictional dampers and precompressed rubber springs. For the purpose, hexahedron Neodymium (NdFeB) magnets and polyurethane rubber cylinders are used. In the dynamic tests, loading frequency varies from 0.1 to 2.0 Hz. The magnets provide almost perfect rectangular behavior in force-deformation curve. The rubber springs are tested without or with precompression. The rubber springs show larger rigid force with increasing precompression. Lastly, this study discusses combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine the magnets and the rubber springs to obtain the flag-shaped behavior.

Evaluation of the Sliding Frictional Characteristics at the Different Loading Mechanisms and Dynamic Stiffness (마찰시험기의 하중부와 방법과 강성 변화에 따른 미끄럼 마찰특성 평가)

  • 윤의성;공호성;권오관;오재응
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.108-116
    • /
    • 1996
  • 본 논문에서는 하중부와 방법을 추(dead weight)와 공압(pneumatic)을 이용한 방법에서 스프링을 이용한 방법을 추가하였으며, 압축형 스프링을 선택적으로 사용하여 마찰시험기 수직방향에서의 강성을 큰 변화 폭으로 변화시켰다. 또한 선행된 연구를 통하여 수직하중의 변동량에 크게 영향을 미치는 것으로 알려진 바 있는 디스크 시편의 misaligment 효과를 상사하고 극대화 하기 위하여 본 논문에서는 경사진 디스크 시편을 추가로 사용하였다. 상기조건으로 마찰시험기 시스템의 각 하중부과 방법과 수직강성 변화가 마찰특성에 미치는 영향을 실험적으로 측정 평가하였으며, 마찰시험기 동특성계 모델의 이론적 해석을 통하여 마찰특성 변화를 고찰하였다. 또한, 미끄럼 접촉 시의 수직력과 마찰력을 측정하고, 데이터의 통계적 처리방법에 따른 마찰계수의 변화 특성도 평가하였다.

  • PDF

Experimental Assessment of Reduction in the Negative Skin Friction Using a Pile with a Member Responding to Ground Deformation (지반 변형 대응 부재를 적용한 말뚝의 부마찰력 저감 성능의 실험적 검증)

  • Shin, Sehee;Lee, Haklin;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.5-16
    • /
    • 2022
  • Ground in extremely cold and hot regions can sink by various environmental factors. Ground settlement can generate the negative skin friction to pile shaft, increase the base load of pile, and cut the stability of the pile. This study proposed a member responding ground deformation which can be inserted inside the pile. The member slightly compresses according to the ground settlement to reduce the negative skin friction. As the member materials, this study considered spring and spring-dashpot. To assess the ability of the member, the present research performed model tests for piles with or without the member within settled ground. In the model tests, the base load, total shaft resistance, and horizontal earth pressure were monitored and analyzed. Experimental results show that the pile with spring member can reduce the negative skin friction under small settlement conditions whereas it acts similar to the pile without the member under large settlement conditions as the spring was no longer compressed. However, the pile with the spring-dashpot member can reduce the negative skin friction continuously upon the ground settlement as the dashpot delays the load transfer to the spring and locates friction force on the unloading path.

On the Damping of A Shock Absorption Device Composed of Disk Spring Stacks (디스크 스프링의 적층 배열에 따른 완충장치의 감쇠에 관한 연구)

  • Choi, Myung-Jin;Ko, Seok-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • The damping of a shock absorption device composed of nonlinear disk spring stacks and rubber rings was investigated. Friction forces of rubber rings and hysteresis of disk springs were obtained experimentally. The hysteresis curves of several types of disk spring stacks were approximated, from which the energy dissipated was estimated. Based upon the friction force and the energy dissipated, 4 damping models were presented and shock responses of the damping models were investigated. The hysteresis of disk spring is more meaningful than the friction of the rubber ring for the damping. For practical use, equivalent viscous damping model for total energy dissipated per cycle was suggested.

  • PDF

Experimental and Analytical Study of the Dynamic Behavior of a Polyurethane Spring Restoring Disk Bearing (폴리우레탄 스프링 복원형 디스크 받침의 동적거동에 대한 실험 및 해석적 연구)

  • Park, Hyung-Ghee;Lee, You-In;Jung, Dae-Yu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • In this paper, the factors affecting the dynamic characteristics of a polyurethane spring restoring disk bearing are analysed to predict the dynamic behavior of the bearing. The prediction results and the test results are compared. The Young's modulus of the polyurethane spring, which varies according to strain of spring and the friction coefficient, of PTFE (PolyTetraFluoroEthylene), which varies according to the velocity and pressure of PTFE, are considered as the factors influencing the dynamic characteristics. W-PTFE virgin products are used and polyurethane springs are produced for the tests. The equation related to changing the friction coefficient and the modulus of elasticity are obtained through an inverse estimation of the test results. The estimation results, considering the factors affecting the dynamic characteristics, simulate the test results more appropriately than the estimation without the consideration of those factors.

Influence of Spring Dynamics and Friction on Dynamic Responses in a Spring-Driven Cam (스프링구동 캠에서 마찰과 스프링운동이 동적응답에 미치는 영향)

  • Ahn, Kil-Young;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.247-254
    • /
    • 2003
  • The paper presents the influence of spring dynamics and friction on dynamic responses in a spring-driven cam system. The characteristics of the friction on the camshaft are analyzed using the nonlinear pendulum experiment while the parameters of the friction model are estimated using the optimization technique. The analysis reveals that the friction of the camshaft depends on stick-slip, Stribeck effect and viscous damping. Spring elements are found to have much influence on the dynamic characteristics. Hence, they are modeled as four-degree-of-freedom lumped masses with equivalent springs. The appropriateness of the derived friction model and spring model is verified by its application to a vacuum circuit breaker mechanism of the cam-follower type.

The development of gas seal lip technology on piston rod for reducing a friction force on moving gas spring elevation (가스 스프링 높이 조절에 있어 마찰력 감소를 위한 피스톤 로드에 작용하는 가스씰 조임 기술 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7166-7175
    • /
    • 2015
  • This paper is a study on using gas springs for reduced friction in the elevation of the large television stand. Target is applied to the operation of the elevation over 50-inch television that uses a gas spring. Gas seal lip technology is needed for development acting on the piston rod in order to obtain a reduction in friction in elevation operation. In order to acting on the gas seal lip technology, the improved friction force can be obtained through the inner diameter of gas seal lip, the design of cutting angle and the changes of material.

Vibrational analysis of the base supported washing machine considering the frictional effect in snubber (스너버의 마찰을 고려한 하부지지형 세탁기의 진동 해석)

  • 최상현;김주호;한창소;한동철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.99-105
    • /
    • 1993
  • 본 연구에서는 세탁통 및 감속장치가 스너버(Snubber)와 지지 스프링에 의 해서 지지되는 하부지지형 세탁기를 모델로 선택하였으며, 시스템의 동특성 해석을 위하여 세탁기를 회전체를 갖는 강체 현가 시스템으로 모델링하고 운동방정식을 구하여 수치 해법을 적용하여 진동 특성을 계산하였다. 세탁기 의 진동 형태를 예측하기 위해서 밑판의 마찰 계수, 스터버의 곡률 반경, 지지 스프링 계수 및 위치 등을 진동량에 영향을 미치는 설계 변수로 선정하여 결과를 구하였으며, 이 자료들을 설계 변경시에 이용할 수 있게 하였다.

  • PDF

A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring (2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.9-14
    • /
    • 2018
  • The function of gas springs is based on the compression of a gas. They are used in a wide variety of industries, and demand for them is increasing. Gas springs can be divided into compression and extension springs. Extension springs have not been studied much in relation to control of the piston speed, unlike compression springs. In this study, the magnitude of the piston rebound pressure was theoretically predicted by calculating the pressure loss in a double-cylinder extension gas spring. Numerical simulations of the piston behavior were carried out for small and large amounts of friction between the piston and the cylinder. FLUENT was used for the simulation with a 6-DOF model and UDF to simulate the behavior of the piston. The calculation regions of the front and rear of the piston were separated, and different types of grids were generated in the regions to implement a dynamic mesh using only a layering method. The results show that the piston returns with the target speed in both cases. However, the patterns of the piston behavior reaching the final speed are different.