• Title/Summary/Keyword: 마찰인자

Search Result 238, Processing Time 0.026 seconds

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

Noise evaluation method of DC motor according to change of load (부하에 따른 DC모터 소음 평가법)

  • Cha, Su-Ho;Shin, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.113-119
    • /
    • 2020
  • Motor noise is a major concern in order to improve perceptual feeling of car interior sound due to increased motor usage in passenger cars. The purpose of this study is to propose factors that can represent the acoustic performance of motor noise according to the change of load. To this end, at first, it is shown that power spectrum and total loudness are not fit for noise performance, and then, PNB, partial loudness related to the brush friction component, and PNR, partial loudness related to the torque ripple component are investigated as factors representing motor noise. The performance curve of motor noise using PNB and PNR is proposed to identify trends of motor noise according to the loads. The curve could be a guide for the noise control, the selection of motor, and the improvement of a system.

A Study on the Stability and Mechanism of Three-Hinge Failure (Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.5-15
    • /
    • 2017
  • Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

The Characterization of Surface Roughness of the Drilled Shaft into Rock (암반에 근입된 현장타설말뚝의 벽면거칠기 특성)

  • Cho, Chun-Hwan;Lee, Myung-Hwan;Yoo, Han-Kyu;Kwon, Hyung-Gu;Park, Eon-Sang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.5-13
    • /
    • 2003
  • The domestic design method for the shaft resistance of drilled shafts into a bedrock is based on the empirical method, where the uniaxial compressive strength of rock specimen is utilized for calculation of the shaft resistance. This method has uncertainties in prediction of capacity of drilled shafts and result in uneconomic engineering design. Recently a new improved design method was suggested, which reflects important factors that affect the strength of pile sockets. Socket roughness is one of the significant factors influencing the shaft resistance of drilled shaft socketed into rock. In this paper roughness information for the shaft resistance design of socket pile was suggested on the basis of statistical analysis of data measured from wall surface in the bore holes of drilled shafts.

  • PDF

Hydro-forming Process Control and Design Concept of Automotive Rear Sub-frame Components Through Cross Sectional Analysis (단면 분석을 통한 자동차용 리어 서브-프레임 하이드로포밍 부품의 공정 제어 및 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.1-6
    • /
    • 2018
  • Hydro-forming technology has spread dramatically throughout automotive industry over the last 20 years. This technology has many advantages for automotive applications in terms of better structural integrity of the parts, lower cost from fewer parts, material savings, weight reduction, lower springback, improved strength, durability, and design flexibility. In this study, various simulation technologies were developed to investigate the formability of hydro-forming components. Through this technology, to establish the effective forming process for appropriate components design, the bending process, pre-forming process, die closing process, etc. were considered for good forming. This paper proposes the forming amount, section length (corresponding to the hydro-forming press capacity), and minimum curvature (curvature effect evaluation according to the hydro-forming pressure) among the considerations in the design of the hydro-forming part. In addition, a design method is proposed for hydro-forming molding by carrying out cross section analysis of a real sub-frame part for automobiles. The effects of pre-bending, axial feed, hydraulic pressure, press load, and friction among the hydro-forming process parameters were analyzed. Therefore, whether these processes are necessary factors for hydro-forming were examined.

A Wheel Wear Analysis of Railway Vehicle on a Curved Section (곡선 구간에서 철도 차량 휠의 마모 특성 해석)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.547-555
    • /
    • 2016
  • The wheel wear of a railway vehicle is mainly generated when maneuvering on a curved track. The change in the wheel profile affects the dynamic stability of the vehicle. In this analysis, the wheel wear volume was calculated while changing the velocity and radius of the curve to analyze the wear characteristics of a wheel at a curved section. The wear index was calculated from a vehicle dynamic analysis based on a multibody dynamics analysis and wear volume from a wear model by British Rail Research. The wear volume at a radius of 300 m is dominant compared with other radii. The wear volume was calculated by assigning different coefficients of friction to the tread and flange of the wheel to investigate the effect of lubrication on the wear characteristics. The effect of the improvement by lubrication is calculated by varying the radius of the track, and is assessed on an actual urban railway section.

Spacer Grid Effects on Turbulent Flow in Rod Bundles (지지격자가 봉다발 난류유동에 미치는 영향)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.56-71
    • /
    • 1996
  • The local hydrulic characteristics in subchannels of 5$\times$5 nuclear fuel bundles with spacer grids were measured at upstream and downstream of the spacer grid for the investigation of the spacer grid effects on turbulent flow structure by using an LDV(Laser Doppler Velocimeter). The measured parameters are axial velocity and turbulent intensity, skewness factor, and flatness factor. Pressure drops were also measured to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. From these data, it was found that the turbulent mixing and forced mixing occur up to $x/D^h=10$ and 20 from the spacer grid, respectively. The turbulence decay behind spacer grid behaves in the similar decay rate as turbulent flow through mesh grids or screens. Mixing factors useful in subchannel analysis code were correlated from the data and show the highest value near spacer grid and then have a stable values.

  • PDF

3D FE Model with FEA Factors and Plastic Shots for Residual Stress Under Oblique Shot Peening (경사충돌 피닝잔류응력에 미치는 해석인자의 영향 및 소성숏이 포함된 3차원 유한요소모델)

  • Lee, Bae-Hwa;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2010
  • In this study, we propose a 3D finite element (FE) model for the residual stress under oblique shot peening. Using the FE model for an oblique impact, we examine the effects of factors on the residual stress such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate the effects. The plastic deformation of the shot is also emphasized. Then, the FE model is used to study oblique multi-impacts. The results obtained using the FE model are compared with experimental x-ray diffraction (XRD) results; in contrast to the rigid and elastic shots, plastic shots are found to produce residual stresses similar to that shown in the XRD results. Thus, the 3D FE models with integrated factors and plastically deformable shots are validated. The proposed model will serve as a basis for the 3D FE model for multi-impacts with different impact angles to simulate the actual phenomenon of shot peening.

Analysis of the Long-term Settlement Behavior Due to the Additional Embankment on the Waste Lime Landfill in Public Waters Reclaimed Land (공유수면 매립지내 폐석회 매립시설의 추가성토에 따른 장기침하 거동 분석)

  • Kang, Jeong Ku;Yi, Yeun Jeung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • Recently, the reclamation of public waters has been on a downward trend due to environmental problems, but there is a limitation to evaluating environmental characteristics index uniformly. In this study, the stability of settlement behavior on public waters reclaimed land was analyzed using the experimental test. From the primary consolidation influence factors, the characteristics of the waste lime was similar that of clay in process of consolidation. Assuming that the waste lime landfill is the layer reinforced with thin geosynthetic reinforcement, the settlement was predicted by calculating the amount of increase using the Westergaard method. As a result of predicting settlement with degree of consolidation, it was found that the increase in stress was reduced by 40% when the surface layer of the soft ground was reinforce with geotextiles compared to the case where it was not reinforced. In addition, the consolidation behavior characteristics of clay and waste lime were compared using the correlation between the plasticity index and internal friction angle of waste lime. Since the waste lime in the public process of consolidation, it was predicted that long-term settlement will increase further.

Active Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft (원형수직구의 흙막이 벽체에 작용하는 주동토압)

  • Chun, Byungsik;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 2006
  • It is well known that earth pressure on the cylindrical open caisson and cylindrical retaining wall of a shaft is less than that at-rest and in plane strain condition because of the horizontal and vertical arching effects due to wall displacement and stress relief. In order to examine the earth pressure distribution of a cylindrical wall, model tests were performed in dry sand for the care of constant wall displacement with depth. Model test apparatus which can control wall displacement, wall friction, and wall shape ratio was developed. The effects of various factors that influence earth pressure acting on the cylindrical retaining wall of a shaft were investigated.

  • PDF