• Title/Summary/Keyword: 마찰영역

Search Result 213, Processing Time 0.023 seconds

The Effects of an Urban Renewal Plan on Detailed Air Flows in an Urban Area (도시 재개발이 도시 지역 상세 대기 흐름에 미치는 영향)

  • Lee, Ju-Hyun;Choi, Jae-Won;Kim, Jae-Jin;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.69-81
    • /
    • 2009
  • Using a computational fluid dynamics (CFD) model, the effects of building complexes constructed under an urban renewal plan on air flows in an urban area were investigated. For this, the geographic information system (GIS) data were used as the input data of the CFD model and four experiments were numerically simulated for different inflow directions (westerly, southerly, easterly, and northerly cases). Before constructing building complexes under the urban renewal plan, wind speed at the pedestrian level was very low around buildings because of decrease in wind speed by the drag effect of the densely distributed low-rise buildings. As the high-rise buildings were constructed and building density decreased by the urban renewal plan, wind speed at the pedestrian level increased compared to that before the urban renewal plan because the drag effect by the buildings decreases and the channeling effect satisfying the mass continuity partially appeared at the spaces among the high-rise buildings. At the upper levels, wind speed partially increased inside the high-rise buildings due to the channeling effect but it remarkably decreased across a vast extent of the downwind regions due to the generation of the recirculation zone and the drag effect of the high-rise buildings.

  • PDF

Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths (흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성)

  • Song, Chang Geun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1077-1086
    • /
    • 2014
  • The flood wave generated due to dam break is affected by initial depth upstream since it is related with hydraulic characteristics propagating downstream, and flow resistance stress has influence on the celerity, travel distance, and approaching depth of shock wave in implementing numerical simulation. In this study, a shallow water flow model employing SU/PG scheme was developed and verified by analytic solutions; propagation characteristics of dam break according to flow resistance and initial depth were analyzed. When bottom frictional stress was applied, the flow depth was relatively higher while the travel distance of shock wave was shorter. In the case of Coulomb stress, the flow velocity behind the location of dam break became lower compared with other cases, and showed values between no stress and turbulent stress at the reach of shock wave. The value of Froude number obtained by no frictional stress at the discontinuous boundary was the closest to 1.0 regardless of initial depth. The adaption of Coulomb stress gave more appropriate results compared with turbulent stress at low initial depth. However, as the initial depth became increased, the dominance of flow resistance terms was weakened and the opposite result was observed.

The Initiation of Slip on Frictional Fractures (마찰 전단면의 전단거동과 에너지방출률)

  • Park, Chi-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.344-351
    • /
    • 2010
  • Slip along a frictional fracture can be approached as initiation and propagation of a mode II crack along its own plane. Fracture mechanics theories predict that under pure mode II loading initiation will occur when the energy release rate of the fracture attains a critical value ($G_{IIC}$), which is generally taken as a material property. For the past few years the rock mechanics group at Purdue University has investigated experimentally the dependence of $G_{IIC}$ on normal stress and on the frictional characteristics of a fracture. A number of experiments has been conducted first on acrylic, a material that, using photoelastic methods, allows visualization of the stress field ahead of the fracture tip; and later on gypsum, a rock model material with relatively low unconfined compression strength. The experimental investigation has been expanded to include other frictional materials with higher unconfined compression strength. Direct shear tests have been conducted on specimens made with cement paste. New observations together with previous experiments indicate that $G_{IIC}$ can only be considered a material property when the peak friction angle of the discontinuity is similar to the residual friction angle; otherwise the critical energy release rate increases with normal stress.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Numerical Analysis of Wave Agitations in Arbitrary Shaped Harbors by Hybrid Element Method (복합요소법을 이용한 항내 파낭 응답 수치해석)

  • 정원무;편종근;정신택;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 1992
  • A numerical model using Hybrid Element Method(HEM) is presented for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident short-period waves. A linear mild-slope equation including bottom friction is used as the governing equation and a partial absorbing boundary condition is used on solid boundaries. Functional derived in the present paper is based on the Chen and Mei(1974)'s concept which uses finite element net in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equations are solved using the Gaussian Elimination Method. The model appears to be reasonably good from the comparison of numerical calculation with hydraulic experimental results of short-wave diffraction through a breakwater gap(Pos and Kilner, 1987). The problem of requring large computational memory could be overcome using 8-noded isoparametric elements.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.

Recognition for Noisy Speech by a Nonstationary AR HMM with Gain Adaptation Under Unknown Noise (잡음하에서 이득 적응을 가지는 비정상상태 자기회귀 은닉 마코프 모델에 의한 오염된 음성을 위한 인식)

  • 이기용;서창우;이주헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • In this paper, a gain-adapted speech recognition method in noise is developed in the time domain. Noise is assumed to be colored. To cope with the notable nonstationary nature of speech signals such as fricative, glides, liquids, and transition region between phones, the nonstationary autoregressive (NAR) hidden Markov model (HMM) is used. The nonstationary AR process is represented by using polynomial functions with a linear combination of M known basis functions. When only noisy signals are available, the estimation problem of noise inevitably arises. By using multiple Kalman filters, the estimation of noise model and gain contour of speech is performed. Noise estimation of the proposed method can eliminate noise from noisy speech to get an enhanced speech signal. Compared to the conventional ARHMM with noise estimation, our proposed NAR-HMM with noise estimation improves the recognition performance about 2-3%.

Improvement of Tribological Characteristics of Multi-Scale Laser-Textured Surface in terms of Lubrication Regime (윤활영역에서 멀티크기 Laser Surface Texturing 효과)

  • Kim, Jong-Hyoung;Choi, Si Geun;Segu, Dawit Zenebe;Jung, Yong-Sub;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Laser Surface Texturing(LST) is a surface engineering process used to improve tribological characteristics of materials by creating patterned microstructures on the mechanical contact surface. In LST technology, a pulsated laser beam is used to create arranged dimples on a surface by a material ablation process, which can improve such as load capacity, wear resistances, lubrication lifetime, and reduce friction coefficients. In the present study, the effect of multi-scale LST on lubricant regime was investigated. A pulsed Nd:YAG laser was applied on the bearing steel(AISI 52100) to create arranged dimples. To optimize the surface texturing effect on friction, multi-scale texture dimples with some specific formula arrays were fabricated by combining circles, ellipses and the laser ablation process. The tribological testing of multi-scale textured surface was performed by a flat-on-flat unidirectional tribometer under lubrication and the results compared with that of the non-textured surface. Through an increase in sliding speed, the beneficial effect of multi-scale LST performance was achieved. The multi-scale textured surface had lower friction coefficient performances than the non-textured surface due to the hydrodynamic lubrication effect.

Effect of Horizontal Resistance at Slab Bottom on Behavior of Concrete Slabs-on-Grade under Vertical Loads (지반위에 놓인 콘크리트 슬래브의 수직하중에 대한 슬래브 하부의 수평 저항의 영향 분석)

  • Shim, Jae-Soo;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.141-150
    • /
    • 2005
  • The behavior of the concrete slabs-on-grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the vertical load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom, and the solutions have been obtained in the transformed field domain using the Fourier transform. Finite element formulations have also been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vertical stiffness of the foundation. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab.

  • PDF

Hybrid Sliding-Mode Controller for the Speed Control of a Hydraulic Inverter-Fed Elevator (유압식 인버터 엘리베이터의 속도제어를 위한 하이브리드 슬라이딩모드제어기)

  • Han, Gueon-Sang;Park, Jae-Sam;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.37-47
    • /
    • 2001
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevator actuated with hydraulic inverter-fed systems, there exist dead zones, which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid control scheme, which switches the modes between a sliding mode controller and a PID controller. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of sliding mode controller for a hydraulic elevator system controlled by inverters, then fellowed by a design method of a hybrid sliding mode control scheme is proposed. The effectiveness of the proposed control scheme are shown by simulation results, which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.

  • PDF