• 제목/요약/키워드: 마찰/마모

검색결과 548건 처리시간 0.019초

플라즈마 용사된 알루미나-지르코니아 복합체의 고온 마모.마찰 거동 (High Temperature Wear Behavior of Plasma-Sprayed Zirconia-Alumina Composite Coatings)

  • 김장엽;임대순;안효석
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.33-38
    • /
    • 1996
  • High temperature wear behaviors of plasma-sprayed ZrO$_{2}$-$Y_{2}O_{3}$ composite coatings were investigated for high temperature wear resistance applications. The composite powders containing 20, 50, 80 vol% of alumina for plasma spray were made by spray drying method. Wear tests with composite coated specimens were performed at temperature ranges from room temperature to 800$^{\circ}$C. Wear tests were also carried out with heat treated specimens at room temperature. The microstructural change of coatings and the worn surface were examined by SEM and XRD. Sharp increase of wear loss at high temperature wear test was observed in specimens containing 50 and 80 vol% alumina. Similar trend was observed in the heat treated coatings. The measured residual stress was increased with increased alumina contents and heat treating temperatures. Residual stress induced during heat treatment appeared to be responsible to the observed harmful effect of alumina additions on the high temperature wear.

접촉조건에 따른 접착형 이황화몰리브덴 피막의 마찰 마모 특성 평가 (Evaluation of the tribological behavior for MoS$_2$ bonded films with different contact geometry)

  • 배일;공호성;박영필
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.232-241
    • /
    • 1997
  • The tribological behavior for MoS$_2$ bonded films is evaluated according to the international standard testing methods, such as ASTM D 2625(Falex tester) and ASTM D 2714(LFW-1 tester). It has been well known that the tribological behavior for MoS$_2$ bonded films is affected by several factors. However, in this work, the wear life for MoS$_2$ bonded films is mainly experimentally measured with different contact geometry, and evaluated in terms of the frictional heating according to the contact geometry of tribotester. The test results show that the wear life of MoS$_2$ bonded films is significantly affected not only by the frictional heating, but also by the contact pressure, test running-in conditions, and the contact conformity.

  • PDF

Vickers Indentor를 이용한 고마찰, 고압 실린더의 정밀마모측정에 관한 연구 (A Study on the Precision Wear Measurement for a High Friction and High Pressurized Cylinder by Using Vickers Indentor)

  • 엄재천;정동윤;공호성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.69-76
    • /
    • 1998
  • A precision wear tester is developed to measure the wear rate of a high friction and high pressurized cylinder. The tester consists of indentor system and optical measuring system. The indentor system has two diamond indentors so that they make indents on the inside of the cylinder by using compressed air system. The X-Y-$\theta$ stage of the measuring system can trace the positions of the indents and can measure the diameters of them. The variation of the diameter of each indent after test is converted into the wear rate.

  • PDF

외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성 (Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk)

  • 이종성;이희성
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.

관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구 (Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk)

  • 이종성;강부병;이희성
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.

$\beta-Sialon/SiC$ Whisker 복합재료의 기계적 물성 및 마찰 마모 특성 연구 (Mechanical and Tribological Properties of $\beta-Sialon/SiC$ Whisker Composite)

  • 김호균;소유영;김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1259-1264
    • /
    • 1994
  • $\beta$-Sialon has been regarded as one of promising materials showing high strength, fracture toughness, corrosion resistence and wear resistence. The improvement of the fracture toughness and tribological properties of $\beta$-Sialon (Z=1) has been attempeted by fabricating the $\beta$-Sialon/ SiC whisker composite. Each of green body composed of following ingredients, i.e., Si3N4, AlN, Y2O3 nd SiC, respectively, was first fired at 178$0^{\circ}C$ for 3hrs in N2 atmosphere and then post-HIPed at 173$0^{\circ}C$ for 1 hr under 170 MPa for N2 gas pressure. The fracture toughness, flexural strength and tribological properties increased with increasing SiC whisker content, despite the reduction of the relative density and hardness. $\beta$-Sialon/15 vol% SiC whisker showed a significant enhancement of wear resistance compared to the monolithic $\beta$-Sialon. The addition of SiC whisker caused the reduction of the density and hardness, but induced the increment of wear resistance.

  • PDF

Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성 (Mechanical and Tribological Properties of Si-SiC-Graphite Composites)

  • 김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

반응소결 SiC-graphite 복합체의 마찰마모특성 (Tribological Properties of Raction-Bonded SiC-Graphite Composites)

  • 백용혁;신종윤;곽효섭;박용갑
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.479-484
    • /
    • 1996
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as mechanical seal slurry valve disc and so on. In this study the effect of graphite addition on the mechanical and tribological properties of RBSC/graphite composites were investigated. The composites were prepared by adding graphite powder to the mixture of SiC powder metallic siliconcarbon black and alumina. Bending strength water absorption friction coefficient the amount of worn out material at a certain time and maximum surface roughness(Rmax) of the prepared composites were measured and crystalline phases were examined with XRD. The composite containing 5 vol% graphite powder showed improved bending strength due to high green density and decreased friction coefficient and wear resistance. The friction coefficient and the wear resistance of the composite were increased by adding graphite powder up to 10 vol% They decreased however as increasing the amount of graphite powder more that 10vol% There was no linear relationship between the tribological properties and bending strength of the composites.

  • PDF

Alumina/graphite 복합체의 마찰마모 특성 (Tribological Properties of Alumina/Graphite Composites)

  • 백용혁;정종인;박용갑;김주영
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.380-386
    • /
    • 1997
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as seal rings, pump parts, thread guides, and so on. In this study, the effects of graphite addition on the mechanical and tribological properties of alumina/graphite composites were investigated. The composites were prepared by the adding of graphite powder to the mixture of Al2O3, talc and calcium carbonate. Bending strength, water absorption, friction coefficient, the amount of worn out material at a certain time, and maximum surface roughness(Rmax) of the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The melt of Al2O3-CaO-MgO-SiO2 system was shown over 10 vol% graphite composition. As the amount of the graphite is increased, needle like crystals of mullite were formed and grown. We obtained the good properties of friction coefficients and wear resistance at the powder composition containing 15 vol% of graphite.

  • PDF

표면 요철을 가지는 탄소 섬유/에폭시 복합재료의 마찰 및 마모 특성 (Tribological Behaviors of Carbon-Epoxy Composite with surface grooves)

  • 김성수;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.180-184
    • /
    • 2004
  • The tribological behavior of carbon epoxy composites whose surfaces have many small grooves of $100\mu m$ width was experimentally investigated with respect to the sliding direction against groove orientation, surface pressure (P) and velocity (V). The wear mechanism of the composites was observed to calculate the wear volume with respect to the friction coefficient using scanning electron microscopic (SEM). Experimental results show that the abrasive wear is dominant wear mechanism for the grooved composite surface and the friction and wear are greatly reduced when the sliding direction is parallel to the axis of groove because abrasive particles are removed through the grooves effectively.

  • PDF