• Title/Summary/Keyword: 마이토큐

Search Result 1, Processing Time 0.018 seconds

The effect of endurance exercise and MitoQ intake on pathological characteristics in MPTP-induced animal model of Parkinson's disease (지구성 운동과 MitoQ 섭취가 MPTP로 유도된 파킨슨 질환 생쥐의 병리학적 특징에 미치는 영향)

  • Kim, Dong-Cheol;Um, Hyun Seob;Oh, Eun-Tak;Cho, Joon-Yong;Jang, Yongchul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.744-754
    • /
    • 2020
  • We investigated the whether endurance exercise and MitoQ intake mediated neuroprotection are associated with mitochondrial function in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine(MPTP) -induced mice model of Parkinson's disease. C57BL/6 male mice were randomly assigned to five groups: Normal Conrol(NC, n=10), MPTP Control(MC, n=10), MPTP +MitoQ(MQ, n=10), MPTP + Exercise(ME, n=10) and MPTP + MitoQ + Exercise(MQE, n=10). Exercise intervention groups performed the treadmill exercise for 5days/week for 5 weeks with gradual increase of intensity. MitoQ intake groups consumed the MitoQ at a concentration of 250μmol by dissolving with water during experiment period. Our data demonstrated that ME and MQE group restored MPTP-induced motor dysfunction. In addition, treatment groups(MQ, ME and MQE) increased tyrosine hydroxylase levels, and suppressed the accumulation of α-synuclein levels. Futhermore, treatment groups modulated the mitochondrial function such as upregulated mitochondrial biogenesis, increased antioxidant enzyme, enhanced a anti-apoptotic protein(e.g., BCL2), and reduced a pro-apoptotic protein(e.g., BAX). Taken together, these results suggested that endurance exercise and MitoQ intake-mediated increase in mitochondrial function contributes to improvement of aggravated dopaminergic neuronal, resulting in attenuation of motor function of Parkinson's disease.