• 제목/요약/키워드: 마이크로 홴

검색결과 2건 처리시간 0.016초

홴 후방 유동장을 고려한 홴싱크 설계에 관한 연구 (A Study on the Design of a Fan-Sink Considering the Flow Fields Behind the Fan Outlet)

  • 조진수;한승호;한철희
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1055-1061
    • /
    • 2002
  • A numerical and experimental study on the flow fields behind the fan outlet was carried out to improve the performance of a conventional fan-sink(fan and heat sink). Conventional fan-sinks have a heat sink of which fin configurations tend to increase the flow resistance, thus decreasing the performance and the cooling capabilities of a fan-sink. Lifting surface method is used for the prediction of flow fields behind the fan outlet. Oil-dot flow visualization technique is applied for the validation of numerical results. The numerical results and experimental data show agreement each other. A conventional heat sink is modified and redesigned using flow patterns behind the fan outlet. The newly designed heat sink has the configuration of curved fins which minimize flow resistance. It showed improvements in both cooling: capabilities and volumetric flow rate compared to the conventional one.

축류 마이크로 홴의 전산해석 및 성능시험 (A Numerical Analysis and Experiment for Micro-Fans)

  • 조진수;변태균;박왕식;전창근
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.895-906
    • /
    • 2000
  • A three dimensional linear frequency-domain lifting surface panel method was used for the aerodynamic analysis of axial flow type micro-fans. As proven by the duct modeling, the tip clearance of the micro-fans tested is large enough to ignore the calculated effect of the duct system. As the numerical results and experimental data agreed well in the operating point region, the method was applicable in the parametric studies to determine the design parameters of axial flow fans. Experiments on micro-fans were carried out based on KS B 6311. The newly designed micro-fan showed improvements in both static pressure rise and volumetric flow rate compared to the existing fans at a given operating condition. No detection of surging and the smooth characteristic curve proved the improvement in performance. To reduce the fan noise in the fan design, it was necessary to make use of the frequency spectrum analysis data. Measurement of sound pressure level for micro-fans was conducted based on KS B 6361 and KS A 0705. The peak - which occurs at blade passage frequency and its higher harmonics due to the fan noise - was not detected. This justifies the design methodology of the blade.