• Title/Summary/Keyword: 마이크로 광 조형

Search Result 31, Processing Time 0.032 seconds

Characteristics of Micro-stereolithography Apparatus Using UV Lamp as Light Source (UV램프 광원 마이크로 광 조형장치의 성능평가)

  • Lee I.H.;Choi J.S.;Lee S.P.;Ko T.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.161-162
    • /
    • 2006
  • Micro-stereolithography technology is used for fabricating of 3-dimensional micro-structures. In some cases, this technology is more economical and simpler than MEMS and LIGA technologies based on semiconductor process. In this research, the micro-sterolithography apparatus that is more economical and simpler than current micro-stereolithography apparatus was developed. This apparatus uses UV lamp and optical fiber as a light source and tight delivery system, respectively.

  • PDF

Generation of Laser Scan Path Considering Resin Solidification Phenomenon in Micro-stereolithography Technology (마이크로 광 조형기술에서 수지경화현상을 고려한 레이저 주사경로 생성)

  • 조윤형;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1037-1040
    • /
    • 2002
  • In micro-stereolithography technology, fabrication conditions that include laser power, laser scan speed, laser scan pitch, and material property of photopolymer such as penetration depth and critical exposure are considered as major process variables. But the existing scan path generation methods based only on CAD model have not taken them into account, which has resulted in cross-section dimension of low accuracy. Thus, to enhance cross-section dimensional accuracy, the physical resin solidification n phenomena should be reflected in laser scan path generation and stage operating code. In this paper, multi-line experiments based on single line solidification model are performed. And the method for improving cross-section dimensional accuracy is presented, which is to apply the database based on experimental results to laser scan path generation.

  • PDF

Development of Micro-stereolithography using UV Lamp and Opical Fiber (UV 램프와 광섬유를 이용한 마이크로 광 조형기술의 개발)

  • Choi J.S.;Lee I.H.;Ko T.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.885-887
    • /
    • 2005
  • Recently, many three-dimensional micros-structures were fabricated using micro-stereolithography technology. However, for most conventional micro-stereolithography apparatus. an expensive laser was used as light source and complex optical systems were used. In this research. new type of micro-stereolithography apparatus which has UV lamp as light source and optical fiber as beam delivery system was developed. This apparatus is cheaper and simpler then conventional micro-stereolithography apparatus.

  • PDF

Photopolymer Solidification Phenomena Considering Laser Exposure Conditions in Micro-stereolithography Technology (마이크로 광 조형에서 레이저 주사조건에 따른 광 경화성수지의 경화현상)

  • 이인환;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate a freeform 3D microslructure. This technology is based on conventional stereolithography, in which a UV laser beam irradiates the open surface of a UV-curable liquid photopolymer, causing it to solidify. In micro-stereolithography, a laser beam of a few $\mu m$ diameter is used to solidify a very small area of the photopolymer. This is one of the key technological elements, and can be achieved by using a focusing lens. Thus, the solidification phenomena of the liquid photopolymer must be carefully investigated. In this study, the photopolymer solidification phenomena in response to variations in the scanning pitch of a focused laser beam was investigated experimentally. The effect of layer thickness on the solidification width and depth was also examined. These studies were conducted under the conditions of relatively lower laser power and relatively higher scanning speed. Moreover, the photopolymer solidification phenomena for the relatively higher laser power and lower scanning speed was investigated, too. In this case, comparing to the case of lower laser power and higher scanning speed, the photopolymer absorbed large amount of irradiation energy of the laser beam. These results were compared with those obtained from a photopolymer solidification model. From these results, a new laser-scanning scheme was proposed according to the shape of the 3D model. Samples by each method were fabricated successfully.

Development of Micro-bellows Actuator Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용한 마이크로 밸로우즈 액추에이터의 개발)

  • Kang H.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.615-618
    • /
    • 2005
  • All over the world, many kinds of micro-actuators were already developed for various applications. The actuators are using various principles such as electromagnetic, piezoelectric and thermopneumatic etc. The most of the micro-actuators have been made using 2D based MEMS technology. In these actuators, it is difficult to drive 3-dimensional motion. This characteristic gives the limit of actuator application. However, micro-stereolithography technology has made it possible to fabricate freeform three-dimensional microstructures. In this technology, 2-dimensional micro-shape layer is cumulated on the other layers. This layer-by-layer process is the main principle to fabricate 3-dimensioal micro-structures. In this research, a micro-bellows actuator that is vertically moving was developed using the micro-stereolithography technology. When pressure was applied into the bellows, a non-contact actuating motion is generated. For actuation experiment, syringe pump and laser interferometer were used for applying pressure and measuring the displacement. Several hundreds micro-scale actuation was observed. And, to demonstrate the feasibility of proposed actuation principle, in this research, a micro-gripper was developed using half-bellows structure.

  • PDF

Development of a Three-Dimensional Barrier Embedded Kenics Micromixer by Means of a Micro-Stereolithography Technology (마이크로 광 조형기술을 이용한 3차원의 배리어가 포함된 케닉스 마이크로 믹서의 개발)

  • Lee In Hwan;Kwon Tai Hun;Cho Dong-Woo;Kim Dong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.904-912
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Barrier Embedded Kenics Micromixer (BEKM). In the BEKM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: (i) splitting/reorientation by helical elements inside the microchannel and (ii) stretching/folding via periodically located barriers on the channel wall. The fully three-dimensional geometry of BEKM was realized by a micro-stereolithography technology, in this study, along with a Kenics micromixer and a circular T-pipe. Mixing performances of three micromixers were experimentally characterized in terms of an average mixing color intensity of phenolphthalein. Experimental results show that BEKM has better mixing performance than other two micromixers. Chaotic mixing mechanism, proposed in this study, could be integrated as a mixing component with Micro-Total-Analysis-System, Lab-on-a-chip and so on.

The Fabrication of Microstructures and Curing Characteristics in Photopolymer on the Microstereolithography using a Dynamic Pattern Generator (다이내믹 패턴 형성기를 이용한 마이크로 광 조형기술에서 미세 구조물 제작 및 수지경화특성에 관한 연구)

  • Kwon B.H.;Choi J.W.;Ha Y.M.;Kim H.S.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1181-1185
    • /
    • 2005
  • Microstereolithography has evolved from the stereolithography technique, and is also based on a light-induced layer-stacking manufacturing. Integral microstereolithography is proposed for building a 3D microstructure rapidly, which allows the manufacture of a complete layer by one irradiation only. In this study, we developed the integral microstereolithography apparatus based on the use of $DMD^{TM}$ as dynamic pattern generator. It is composed of Xenon-Mercury lamp, optical devices, pattern generator, precision stage, controllers and the control program. Also, we estimated curing characteristics in photopolymer. The relationship between the viscosity of diluent-oligomer solutions and curing width, irradiation time and curing property has been studied.

  • PDF

Development of Three-dimensional Scaffold for Cartilage Regeneration using Microstereolithography (마이크로 광 조형 기술을 이용한 연골조직 재생용 3 차원 인공지지체 개발)

  • Lee, Seung-Jae;Kang, Tae-Yun;Park, Jung- Kyu;Rhie, Jong-Won;Hahn, Sei-Kwang;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1265-1270
    • /
    • 2007
  • Conventional methods for fabricating three-dimensional (3-D) scaffolds have substantial limitations. In this paper, we present 3-D scaffolds that can be made repeatedly with the same dimensions using a microstereolithography system. This system allows the fabrication of a pre-designed internal structure, such as pore size and porosity, by stacking photopolymerized materials. The scaffolds must be manufactured in a material that is biocompatible and biodegradable. In this regard, we synthesized liquid photocurable biodegradable TMC/TMP, followed by acrylation at terminal ends. And also, solidification properties of TMC/TMP polymer are to be obtained through experiments. Cell adhesion to scaffolds significantly affects tissue regeneration. As a typical example, we seeded chondrocytes on two types of 3-D scaffold and compared the adhesion results. Based on these results, the scaffold geometry is one of the most important factors in chondrocyte adhesion. These 3-D scaffolds could be key factors for studying cell behavior in complex environments and eventually lead to the optimum design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  • PDF

Characteristics of chondrocytes adhesion depends on geometric of 3-dimensional scaffolds fabricated by micro-stereolithography (마이크로 광 조형 기술로 제작된 3차원 인공지지체의 구조적 형태에 따른 연골세포의 생착 특성)

  • Lee S.J.;Kim B.;Lim G.;Kim S.W.;Rhie J.W.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.173-174
    • /
    • 2006
  • Understanding chondrocyte behavior inside complex, three-dimensional environments with controlled patterning of geometrical factors would provide significant insights into the basic biology of tissue regenerations. One of the fundamental limitations in studying such behavior has been the inability to fabricate controlled 3D structures. To overcome this problem, we have developed a three-dimensional microfabrication system. This system allows fabrication of predesigned internal architectures and pore size by stacking up the photopolymerized materials. Photopolymer SL5180 was used as the material for 3D scaffolds. The results demonstrate that controllable and reproducible inner-architecture can be fabricated. Chondrocytes harvested from human nasal septum were cultured in two kinds of 3D scaffolds to observe cell adhesion behavior. Such 3D scaffolds might provide effective key factors to study cell behavior in complex environments and could eventually lead to optimum design of scaffolds in various tissue regenerations such as cartilage, bone, etc. in a near future.

  • PDF