• Title/Summary/Keyword: 마이크로 가스터빈

Search Result 96, Processing Time 0.036 seconds

Development of a 50kW Micro Gas Turbine Engine (50kW 마이크로 가스터빈 개발)

  • Kim, Sooyong;Park, MooRyong;Choi, Bumseok;Ahn, Kookyoung;Choi, SangKyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.314-319
    • /
    • 2002
  • Performance analysis and test of a 50kW micro gas turbine is carried out. The present study was initiated in 1996 by KIMM researchers to develope a 50kW class turbogenerator gas turbine engine for hybrid vehicle propulsion system. but with its low emission and compactness, it seemed that it can also be applied as a source of distributed power generation. In this study, general description of the KIMM's efforts to acquire performance test skills of the self-made 50kW micro gas turbine engine. At present, non-load performance test up to 615000 rpm was accomplished and is expected to make through 80,000 rpm by the end of year. Several revisions in design and manufacture were made during the course of experiments. The resulting outputs is thought to be valuable for the further refinement of the system for eventual commercialization of the product.

  • PDF

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 1 - Performance Analysis Program (마이크로 가스터빈 설계 및 운전 성능 분석 : 제1부 - 성능해석 프로그램)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, an in-house program to predict steady state operation of micro gas turbines is constructed using MATLAB. The program consists of two parts: design and off-design simulations. The program is fully modular in its structure, and performance of each component (compressor, combustor, turbine, recuperative heat exchanger and pipe elements) is calculated in a separate calculation module using mass and energy balances as well as models for off-design characteristics. The off-design modules of compressor and turbine use performance maps, which are program inputs. The off-design operation of a micro gas turbine under development was predicted by the program. The prediction results were compared with those by commercial software, and the validity of the in-house program was confirmed.

Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System (고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석)

  • Yang, Jin-Sik;Song, Tae-Won;Kim, Jae-Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Kim, T.S.;Hwang, S.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.

Analysis of Operation Performance of a Micro Gas Turbine Generator System (마이크로 가스터빈 발전시스템의 운전성능 분석)

  • Lee, J. J.;Kim, T. S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.13-21
    • /
    • 2005
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured. Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. A method to estimate characteristic parameters such as component efficiencies, based on the comparison between measured and predicted performance data, is suggested and exemplified for the full load condition.

Development of Performance Simulation Models for MGT (마이크로 가스터빈(MGT) 성능 시뮬레이션 모델 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.52-62
    • /
    • 2008
  • All forecasts of a future energy demand anticipate an increase across the globe. With the increase of energy demand, the emission of $CO_2$ is also likely to increase by at least the same amount because energy supply will be based on fossil fuels, which is more apparent in a number of developing countries. In this context, the Micro Gas Turbine (MGT) is being considered as a promising solution. In order to propose a feasible concept of those technologies such as improving environmental effect and economics, we performed a sensitivity study for a biomass fueled MGT using a simulation model. The study consists of 1) the fundamental modeling using manufacturer's technical specifications, 2) the correction with the experimental data, and 3) the sensitivity study for system parameters. The simulation model was developed by PEPSE-GT 72, commercial steam/gas turbine simulation toolbox.

Performance Test of MGT Combined Heat & Power System (마이크로 가스터빈 열병합 발전시스템 성능평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.313-316
    • /
    • 2006
  • As Decentralized Generation(DG) becomes more reliable and economically feasible, it is expected that a higher application of DG units would be interconnected to the existing grids. This new market penetration of DG technologies is linked to a large number of factors like technologies costs and performances, interconnection issues, safety, market regulations, environmental issues or grid connection constrains. Korea Electric Power Corporation (KEPCO) has researched performance characteristics of the 60k W class 1) basic start-up & shutdown operation analysis 2) interconnection test 3) MGT -absorption chiller-heater system in the local condition. Variations of heat recovery from exhaust gas has measured according to micro gas turbine output of 15, 30, 45, 60kW. From those results, the performance of the MGT-absorption chiller/heater system has been evaluated. The suggested strategy and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

Evaluation of Component Performance of a Commercial Micro Gas Turbine (상용 마이크로 가스터빈의 구성부 성능분석)

  • Lee, J.J.;Yun, J.E.;Kim, T.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.331-337
    • /
    • 2005
  • This study aims at evaluation of component performance of a commercial micro gas turbine by detailed measurements of various system parameters. A test facility to measure performance of a micro gas turbine was set up. Performance parameters such as turbine exit temperature, exhaust gas temperature, engine inlet temperature, compressor discharge pressure and fuel flow rate were measured. Variations in measured data and estimated performance parameters were analyzed. In addition to overall engine performance, component characteristic parameters including the turbine inlet temperature, the compressor efficiency, the turbine efficiency, the recuperator effectiveness were estimated. Behaviors of the estimated characteristic parameters with operating condition change were examined.

  • PDF

Analysis of Operation Performance of a Micro Gas Turbine Generator System (마이크로 가스터빈 발전시스템의 운전성능 분석)

  • Lee, J. J.;Kim, T S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.132-139
    • /
    • 2004
  • This study aims to analyze operating performance of a micro gas turbine with the aid of detailed measurements of various system parameters. In addition to embedded measurements, parameters such as exhaust temperatures, engine inlet temperatures and fuel flow rates are measured Variations in measured data and estimated performance parameters are analyzed. Those data are processed to calculate losses along the power transmission line and the net gas turbine performance (power and efficiency based on the gas turbine shaft end) is isolated from the overall system performance. On the basis of the measured data, analytical approach is tried to estimate design characteristic and performance parameters such as component efficiencies and unmeasured temperatures.

  • PDF

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Hwang, S.H.;Kim, T.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.80-87
    • /
    • 2003
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions for a considerable amount of the time. This study aims at analyzing off-design performance characteristics of micro gas turbines and addressing the importance of the recuperator in the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration (fuel only control, variable speed operation, variable inlet guide vane control), and current vs advanced engines. Major finding is that maintaining turbine at high level is crucial in efficient operation of micro gas turbines.

  • PDF