• Title/Summary/Keyword: 마이크로핀 튜브

Search Result 5, Processing Time 0.021 seconds

Evaporation Heat Transfer and Pressure Drop of R-410A in a 7.0 mm O.D. Microfin Tube at Low Flow Rates (낮은 유량에서 외경 7.0 mm 마이크로핀 튜브 내 R-410A 증발 열전달 및 압력 손실)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.761-772
    • /
    • 2015
  • Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of $kg/m^2s$. However, literature surveys reveal that previous investigations were limited to mass flux over $100kg/m^2s$. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes ($50-250kg/m^2s$) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at $8^{\circ}C$, and the heat flux was maintained at $4.0kW/m^2$. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to $150kg/m^2s$, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations.

Evaluation of Performance of a Residential Air-Conditioning System Using Microchannel and Fin-and-Tube Heat Exchanger (마이크로채널과 핀 튜브 열교환기를 적용한 가정용 에어컨디셔너의 성능 평가)

  • Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this study the seasonal performance of a residential air conditioning system having either a fin-and-tube condenser or a microchannel condenser is experimentally investigated. A commercially available 7 kW capacity residential air conditioning system having a fin-and-tube condenser served as the base system. The test results show that the system with a microchannel heat exchanger has a reduced refrigerant charge amount of 10%, the coefficient of performance is increased by 6% to 10%, and the SEER is increased by 7% as compared with those of the base system. Moreover, the condensing pressure of the system is decreased by 100 kPa and the pressure drop across the condenser is decreased by 84%. The microchannel heat exchanger enhances the SEER of the residential air conditioning system by providing better heat transfers at reduced pressure drops.

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

Frost Prevention of Fin-Tube Heat Exchanger by Spreading Antifreezing Solution (부동액 도포에 의한 핀-튜브 열교환기 착상방지)

  • Oh, Sang-Youp;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.477-485
    • /
    • 2006
  • A study on frost prevention of fin-tube heat exchanger is experimently performed by spreading antifreezing solution on heat exchanger surface. It is desirable that the antifreezing solution spreads completely on the surface forming thin liquid film to prevent frost nucleation and crystal growth and to reduce the thermal resistance across the liquid film. A small amount of antifreezing solution falls in drops on heat exchanger surface using two types of supplying devices, and a porous layer coating technique is adopted to enhance the wettedness of antifreezing solution on the surface. It is observed that the antifreezing solution liquid film prevents fin-tube heat exchanger from frosting, and heat transfer performance does not degrade through the frosting tests. The concentration of supplied antifreezing solution can be determined by heat transfer analysis of the first row of heat exchanger to avoid antifreezing solution freezing due to dilution by moisture absorption.

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.