• Title/Summary/Keyword: 마이크로폴 안테나

Search Result 52, Processing Time 0.024 seconds

Multi-band Micropole Antenna Design Using Impedance Change (임피던스 변화를 이용한 다중대역 마이크로폴 안테나 설계)

  • Park, Jaehong;Kim, Hyunhee;Lee, Kyungchang;Hwang, Yeongyeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2021
  • A multi-band, compact, and complex vehicle roof antenna has become important in terms of car exterior design and multi-functions which include Radio, DAB/DMB, SXM, GNSS, Telematics, and V2X. In this paper, we propose a compact multi-band V2X pole-type roof antenna. Using impedance change characteristic, a single pole antenna which has multiband such as radio, DAB/DMB, telematics, and V2X band is proposed. With two patch antennas for GNSS and SXM, the dimension of a multiband roof antenna is 131x63x37mm only.

Trapezoidal Monopole Microstrip Antenna for UWB (UWB용 사다리꼴 모노폴 마이크로스트립 안테나)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.134-140
    • /
    • 2009
  • In this paper, we discussed the trapezoidal antenna model in the microstrip structure for UWB communications in the frequency band of $3.1{\times}10.6GHz$. Through the computer simulations for the difference size of trapezoidal monopole microstrip antenna model, the good impedance matching characteristic of return loss less than -10dB(VSWR<2) in all the band of UWB showed. The optimized antenna of this paper also showed the quasi-isotropic radiation characteristics in the horizontal plane and linear phase characteristic of nondispersive property.

Design of Triple-Band Microstrip Antenna for WLAN/WiMAX (WLAN/WiMAX용 삼중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Goen;Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • In this paper, we designed monopole microstrip antenna for WLAN/WiMAX system. The monopole antenna is designed by FR-4 substrate with size is $30mm{\times}40mm$. The proposed antenna is based on a planar monopole design which cover WLAN and WiMAX frequency bands. To obtain the optimized parameters, we used the simulator, CST's Microwave Studio Program and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is designed. Thus the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • 차상진;이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.125-130
    • /
    • 2004
  • Various antennas have been developed to be used for UWB systems, However, Simultaneously meet omni-directional and low-VSWR requirements, essential for some applications such as UWB channel sounding. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover m frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. Antenna radiation pattern is omnidirectional at 3.5GHz - 10GHz. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The proposed antenna easy to construct UWB system.

Design and Analysis of an Impedance-Tuned Monopole Microstrip Patch Antenna using the Finite Difference Time Domain Method (유한 차분 시간 영역 해석법을 이용한 임피던스 정합 모노폴 마이크로스트립 안테나 설계 및 해석)

  • Jung, Young-Ho;Lee, Dong-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.28-33
    • /
    • 2002
  • In this paper, the impedance-tuned monopole microstrip antenna designed for PCS is analyzed using finite difference time domain(FDTD) method. The perfectly matched layer(PML) absorbing material condition proposed by Berenger is used for the truncation of finite difference time domain lattice. A Gaussian pulse is selected as an excitation signal and a resistive voltage source model is used to reduce the error caused by the reflection waves. The FDTD method is inherently a near field technique. Therefore, the near field to far field transformation is need to compute far field antenna parameters such as radiation patterns and gain. The near field to far field transformation can be done both in the time domain and the frequency domain. We use the frequency domain transformation to compute the far field radiation patterns at single frequency. All the numerical results obtained by the FDTD method are compared with simulation results using the HFSS software. Good agreements are obtained in all cases.

T-shaped Microstrip Monopole Antenna with a Pair of Slits for Dual-Band Operation (슬릿쌍을 이용한 이중 대역 T-형 마이크로스트립 모노폴 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.759-763
    • /
    • 2011
  • In this paper, a dual-band T-shaped microstrip monopole antenna with a pair of slits for 2.4/5.2/5.8-GHz wireless local area networks (WLANs) is proposed. A pair of T-shaped slits is loaded on a T-shaped monopole antenna fed by microstrip line in order to obtain dual-band operation as well as to reduce the antenna size. It is demonstrated from experimental results that the proposed antenna can cover all the required bands for WLAN. The measured impedance bandwidth for VSWR<2 is about 5.7% (2.37-2.51GHz) in the lower frequency band and about 28.8% (4.76-6.35GHz) in the higher frequency band. The measured peak gains are about 1.33 dBi to 1.66 dBi in the 2.4GHz band, 3.50 dBi to 3.95 dBi in the 5.25GHz band, and 2.06 dBi to 2.34 dBi in the 5.8GHz band.

Dual-band reconfigurable monopole antenna using a PIN diode (PIN 다이오드를 이용한 WLAN용 재구성 모노폴 안테나)

  • Mun, Seung-Min;Yoong, Joong-Han;Kim, Gi-Re
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1633-1640
    • /
    • 2016
  • In this paper, we propose a open-ended rectangular microstirp patch antenna with fork-shaped feeding structure. This antenna extends the effective bandwidth by transforming single or multi resonant frequency and is designed planar monopole structure with microstrip line to satisfy the WLAN bands (2.4 - 2.484, 5.15 - 5.35, 5.25-5.825 GHz). The substrate is printed in 0.8 mm thickness on an FR-4 board. A commercial 3D simulation tool was used to analyze surface current and electromagnetic field distribution in order to analyze the operation mode and reconfiguration principle of antenna. According to the lengths of individual patches, simulated reflection loss was compared to obtain optimized values. When it was designed with the optimized values, it satisfied WLAN bands (2.380 - 2.710, 4.900 - 5.950 GHz), if the switch is off, and 2.4 WLAN band (2.380 - 2.710 GHz). From the fabricated and measured results, measured results of return loss, gain and radiation patterns characteristics displayed for operating bands.

Design of wideband microstrip monopole slot antenna (광대역 마이크로스트립 모노폴 슬롯안테나의 설계)

  • Lee, Young-Soon;Cho, Yun-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.766-772
    • /
    • 2012
  • In the present study, wideband microstrip monopole slot antennas which can be applied to the RF4CE Zigbee remote controller are designed. First I-shaped monopole slot antenna which has ${\lambda}g/4$ length at 2.45GHz is designed. In particular, a conducting via is used to connect the microstrip feed line and the ground plane surrounded with the etched slot for the bandwidth improvement. In order to reduce the antenna size, it is changed into L-shaped and T-shaped monopole slot antennas for which improve results of antenna performance are observed. In case of T-shaped monopole slot antenna, impedance bandwidth(VSWR<2) is about 3.32GHz, and also its radiation efficiency and gain is more than 90% and 2.1dBi respectively at whole operating frequency range. In particular, all of proposed monopole slot antennas have the end-fire radiations which has a maximum radiation power toward direction of open ends of monopole slots.

A Study on the Bandwidth Enhancement of a Microstrip Surface Wave Antenna With a Monopole Like Pattern (모노폴 방사패턴을 가지는 마이크로스트립 표면파 안테나의 대역폭개선에 관한 연구)

  • Jang, Jae-Sam;Jung, Young-Ho;Lee, Ho-Sang;Jo, Dong-Ki;Park, Seong-Bae;Kim, Cheol-Bok;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.139-145
    • /
    • 2008
  • In this paper, a microstrip surface wave antenna(SWA) with a frequency selective surface structure(FSS) is designed and measured. A microstrip SWA has many advantages such as low profile, low weight, easy fabrication, and compatibility with monolithic microwave integrated circuits(MMIC). In addition, it has demonstrated monopole like beam patterns. The microstrip SWA consists of two parts : a center-fed modified microstrip patch to excite surface wave, and a periodic patches to support the propagation of the surface waves. To obtain wide bandwidth, the ring type parasitic element is inserted and the circular patch is selected for the unit element in FSS structure. Experimental results show that the microstrip SWA has monopole like beam patterns at 5.9GHz. Impedance bandwidth and gain is 12% and 5.6dBi.

Base Station Antenna with Rectangular Radiation Pattern using Strip Feeding Planar Monopole Array (스트립 급전 평면 모노폴 배열을 이용한 직사각형 방사패턴 기지국용 안테나)

  • 신헌철;문상만;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1018-1024
    • /
    • 2001
  • In this paper, an array antenna is designed far base station of a street micro-cell in urban areas. It has a rectangular radiation pattern. The current distribution of the array is decided by using a modified Woodward-Lawson sampling pattern synthesis method. To confirm the realization of the array antenna with rectangular pattern, 12 array antenna with a planar type monopole fed by stripline is fabricated and measured. In the results of the measured values, H-plane pattern of the antenna nearly yields a rectangular radiation pattern.

  • PDF