• Title/Summary/Keyword: 마이크로파

Search Result 1,455, Processing Time 0.069 seconds

Establishments of Lead Standards through Monitoring Heavy Metals in Calcium, Chitosan, and Propolis Health Foods (칼슘, 키토산, 프로폴리스 건강보조식품중 중금속 모니터링을 통한 납기준 제정)

  • Kim, Mee-Hye;Chung, So-Young;Sho, You-Sub;Kim, Myung-Chul;Kim, Chang-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.525-528
    • /
    • 2001
  • This study was conducted to estimate the contents of heavy metals in some health foods available on Korean markets. The samples were digested with microwave system, then analyzed using GF-AAS for the contents of lead (Pb), cadmium (Cd) and arsenic (As). The contents of mercury (Hg) were determined using a mercury analyzer. The average values of Hg, Pb, Cd and As in calcium (Ca) health foods were 0.007, 1.08, 0.02 and 0.48 mg/kg respectively. Those values in chitosan health foods were 0.001, 0.36, 0.01 and 0.03 mg/kg respectively. Those values in propolis health foods were 0.013, 4.96, 0.01 and 0.13 mg/kg, respectively. The health foods that contained cow bone powders had the highest lead contents. Based on the variation in lead contents of those products, it could be possible that they might be contaminated through raw materials and/or manufacuring process. Some propolis products were also very high in lead contents. There could be risks for some population, especially the aged who overtake those health foods, to have heavy intake of lead. Therefore, we established the lead standards of 3.0, 2.0 and 5.0mg/kg less than for Ca, chitosan and propolis health foods respectively, based on the Codex method.

  • PDF

Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System (지상관측 레이다 산란계를 이용한 벼 군락의 후방산란계수 측정)

  • Hong, Jin-Young;Kim, Yi-Hyun;Oh, Yi-Sok;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.145-152
    • /
    • 2007
  • The polarimetric backscattering coefficients of a wet-land rice field which is an experimental plot belong to National Institute of Agricultural Science and Technology in Suwon are measured using ground-based polarimetric scatterometers at 1.8 and 5.3 GHz throughout a growth year from transplanting period to harvest period (May to October in 2006). The polarimetric scatterometers consist of a vector network analyzer with time-gating function and polarimetric antenna set, and are well calibrated to get VV-, HV-, VH-, HH-polarized backscattering coefficients from the measurements, based on single target calibration technique using a trihedral corner reflector. The polarimetric backscattering coefficients are measured at $30^{\circ},\;40^{\circ},\;50^{\circ}\;and\;60^{\circ}$ with 30 independent samples for each incidence angle at each frequency. In the measurement periods the ground truth data including fresh and dry biomass, plant height, stem density, leaf area, specific leaf area, and moisture contents are also collected for each measurement. The temporal variations of the measured backscattering coefficients as well as the measured plant height, LAI (leaf area index) and biomass are analyzed. Then, the measured polarimetric backscattering coefficients are compared with the rice growth parameters. The measured plant height increases monotonically while the measured LAI increases only till the ripening period and decreases after the ripening period. The measured backscattering coefficientsare fitted with polynomial expressions as functions of growth age, plant LAI and plant height for each polarization, frequency, and incidence angle. As the incidence angle is bigger, correlations of L band signature to the rice growth was higher than that of C band signatures. It is found that the HH-polarized backscattering coefficients are more sensitive than the VV-polarized backscattering coefficients to growth age and other input parameters. It is necessary to divide the data according to the growth period which shows the qualitative changes of growth such as panicale initiation, flowering or heading to derive functions to estimate rice growth.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Oceanic Application of Satellite Synthetic Aperture Radar - Focused on Sea Surface Wind Retrieval - (인공위성 합성개구레이더 영상 자료의 해양 활용 - 해상풍 산출을 중심으로 -)

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.447-463
    • /
    • 2019
  • Sea surface wind is a fundamental element for understanding the oceanic phenomena and for analyzing changes of the Earth environment caused by global warming. Global research institutes have developed and operated scatterometers to accurately and continuously observe the sea surface wind, with the accuracy of approximately ${\pm}20^{\circ}$ for wind direction and ${\pm}2m\;s^{-1}$ for wind speed. Given that the spatial resolution of the scatterometer is 12.5-25.0 km, the applicability of the data to the coastal area is limited due to complicated coastal lines and many islands around the Korean Peninsula. In contrast, Synthetic Aperture Radar (SAR), one of microwave sensors, is an all-weather instrument, which enables us to retrieve sea surface wind with high resolution (<1 km) and compensate the sparse resolution of the scatterometer. In this study, we investigated the Geophysical Model Functions (GMF), which are the algorithms for retrieval of sea surface wind speed from the SAR data depending on each band such as C-, L-, or X-band radar. We reviewed in the simulation of the backscattering coefficients for relative wind direction, incidence angle, and wind speed by applying LMOD, CMOD, and XMOD model functions, and analyzed the characteristics of each GMF. We investigated previous studies about the validation of wind speed from the SAR data using these GMFs. The accuracy of sea surface wind from SAR data changed with respect to observation mode, GMF type, reference data for validation, preprocessing method, and the method for calculation of relative wind direction. It is expected that this study contributes to the potential users of SAR images who retrieve wind speeds from SAR data at the coastal region around the Korean Peninsula.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.