• Title/Summary/Keyword: 마이크로믹서

Search Result 73, Processing Time 0.024 seconds

Magnetohydrodynamic (MHD) Micromixer Using Multi-Vortical Flow (다중 와류 유동을 이용한 자기유체역학 (MHD) 마이크로 믹서)

  • Yang, Won-Seok;Kim, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In this paper, we propose a novel chaotic micromixer of which mixing mechanism is based upon magnetohydrodynamic (MHD) multi-vortical flow generation in a simple straight microchannel. In the microchannel of the micromixer has electrodes patterned on two side walls and bottom wall. Lorentz forces are variously induced by changing applied voltages at the patterned electrodes in order to pump and mix conductive fluids in the microchannel. Three-dimensional computational fluid dynamics simulations were conduced to characterize mixing behaviors inside the MHD micromixer. The mixing efficiencies were also evaluated for the various flow conditions.

Performance Assessment of Passive Micromixer using Numerical Analysis (수치해석을 이용한 패시브 마이크로 믹서의 성능평가)

  • Lee, Jeong-Ick;Kim, Chul-Kyu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.237-242
    • /
    • 2018
  • A micromixer is a component of a lab-on-a-chip or microfluidic device that mixes two or more chemicals together(convergence). The purpose of this study is to assess the performance of passive micromixer of various shapes. Six shapes of micromixers were compared and three dimensional modeling was carried out to have the same hydraulic diameter. The commercial code, ANSYS Fluent, was used to simulate the internal mixing flow. A numerical analysis method is described in detail in this paper. The performance of the micromixer was compared with the mixing index and pressure drop. Consequently, the CDM-8T shape showed reasonable mixing performance and relatively low pressure drop.

Study of a Y-Channel Micromixer with Obstacles to Enhancing Mixing (Y-Channel 마이크로 믹서의 혼합 개선을 위한 연구)

  • Kim, Jin-Wook;Kim, Sang-Woo;Lee, Do-Hyung;Kang, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.851-857
    • /
    • 2010
  • In this study, an experiment was performed to obtain the optimum design of a passive micromixer for effective mixing by using a microsized device and rectangular obstacles; a low Reynolds number was maintained in the microchannel. The experiment was carried out by varying the number, size, and location of the rectangular obstacles. Further, the Y-channel's shape was optimized for maximizing the mixture ratio, which has limit qualification that an allowed value of pressure drop. The increase in the efficiency of mixing was observed to be greater than that in the case of circular obstacles by approximately 2.5%.

Low Conversion Loss and High Isolation 94 GHz MHEMT Mixer Using Micro-machined Ring Coupler (마이크로 머시닝 링 커플러를 사용한 낮은 변환 손실 및 높은 격리 특성의 94 GHz MHEMT 믹서)

  • An Dan;Kim Sung-Chan;Park Jung-Dong;Lee Mun-Kyo;Lee Bok-Hyung;Park Hyun-Chang;Shin Dong-Hoong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.6 s.348
    • /
    • pp.46-52
    • /
    • 2006
  • We report on a high performance 94 GHz MMIC resistive mixer using 70-nm metamorphic high electron mobility transistor (MHEMT) and micro-machined W-band ring coupler. A novel 3-dimensional structure of resistive mixer was proposed in this work, and the ring coupler with the surface micro-machined dielectric-supported air-gap microstrip line (DAMLs) structure was used for high LO-RF isolation. The fabricated mixer showed an excellent LO-RF isolation of -29.3 dB and a low conversion loss of 8.9 dB at 94 GHz. To our knowledge, compared to previously reported W-band mixers, the proposed MHEMT-based resistive mixer using micro-machined ring coupler has shown superior LO-RF isolation as well as similar conversion loss.

Cross-sectional Radiation Type Mixer into the Boundary Surface using PMN-PT for Micromixing (마이크로믹서에의 응용을 위해 PMN-PT를 이용한 경계면과 수직방향 방사형 믹서)

  • Heo Pil Woo;Yoon Eui Soo;Kho Kwang Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.33-37
    • /
    • 2005
  • A micromixer plays an important role in Bio-MEMS or μ-TAS. Mixing is generally generated by turbulence and interdiffusion of two fluids. Because of low Reynolds number values (Re << 2000) within microchannels, it is difficult to generate turbulence, and consequently mixing mainly depends on interdiffusion. So, channel distance is often prohibitively long to mix two different fluids properly. To reduce this mixing length, we proposed a new mixer for micromixing in which two fluids were effectively mixed by an ultrasonic wave generated by PMN-PT. The ultrasonic wave was radiated into a chamber In the cross-sectional direction into the boundary surface formed by two fluids. The two fluids were positioned one on top of the other. The mixing state was measured by observing the color of samples due to the reaction of NaOH and phenolphthalein.

A PRELIMINARY STUDY ON THE EFFECT OF SLANTED GROOVE MIXER (SGM) ON THE PERFORMANCE OF A PEM FUEL CELL (기울어진 그루브 믹서가 고분자 전해질 연료전지 성능에 미치는 영향에 대한 기초연구)

  • Yun, S.C.;Park, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • In the cathode channel of a PEM fuel cell, the local concentration of oxygen near the gas diffusion layer (GDL) decreases in streamwise direction due to chemical reactions, which degrades the efficiency of the oxygen consumption and overall fuel cell efficiency. We numerically studied the influence of the swirling flow generated by a slanted groove mixer (SGM) on the concentration distribution of oxygen. We found that the swirling flow can increase the concentration of oxygen near the GDL, and subsequently improves the oxygen consumption rate.

  • PDF