• Title/Summary/Keyword: 마이크로/나노 위성

Search Result 12, Processing Time 0.02 seconds

MEMS Power Device (초소형 동력 장치)

  • Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Thanks to the breakthroughs in micro fabrication technology, numerous concepts of micro aerospace systems including micro aerial vehicle, nano satellite and micro robot have been proposed. In order to activate these mobile micro systems, high density power in a small scale power source is required. However, we still do not have micro power source that has energy density that can support these systems. In the present article, status of micro power sources are described and alternatives that have been derived from the past experience are proposed.

DEVELOPMENT AND PERFORMANCE VALIDATION OF INTEGRATED ELECTRONIC UNIT FOR NANOSATELLITE (나노위성용 통합형 전장박스의 개발 및 성능검증)

  • Chang Jin-Soo;Kim Dong-Woon;Lee Byung-Hoon;Moon Byoung-Young;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.133-136
    • /
    • 2006
  • Unlike large satellites, small satellites, such as nanosatellite and microsatellite, provide a limited interior space for components mounting. In order to mitigate this issue, the compact Bus Electronic Unit (BEU) that integrates satellite electronic modules, combining most of bus subsystems and payloads electronic modules into one unit, has been developed for HAUSAT-2 nanosatellite. This paper addresses the design and environmental test result analyses of BEU.

  • PDF

Design, Fabrication and Testing of Planar Type of Micro Solid Propellant Thruster (평판형 마이크로 고체 추진제 추력기의 설계, 제작 및 평가)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • With the development of micro/nano spacecraft, concepts of micro propulsion are introduced for orbit transfer and drag compensation as well as attitude control. Micro solid propellant thruster has been attention as one of possible solution for micro thruster. In this paper, micro solid propellant thruster is introduced and research on basic components of a micro solid propellant thruster is reported. Micro Pt igniter was fabricated through negative patterning and quantitative effect of geometry was estimated. The characteristic of HTPB/AP solid propellant was investigated to measure the homing velocity. A combustion chamber was fabricated by means of anisotropic etching of photosensitive glass. Finally, micro solid propellant thrusters having various geometries were fabricated and tested.

초음속 마이크로노즐에 적합한 프로파일을 위한 공정변수의 최적화

  • Song, U-Jin;Jeong, Gyu-Bong;Cheon, Du-Man;An, Seong-Hun;Lee, Seon-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • 마이크로노즐은 우주공간에서 인공위성의 자세를 바로잡는 데 필요한 마이크로 로켓에 들어가는 필수적인 부품이다. 마이크로 노즐은 또한 나노입자 적층 시스템(nano-particle deposition system, NPDS)에 들어갈 수 있다. NPDS는 세라믹 또는 금속 나노분말 입자를 노즐을 통해 초음속으로 가속시킨 뒤 상온에서 이를 기판에 적층시키는 새로운 시스템이다. 본 연구의 목표는 NPDS에 쓰이는 노즐을 일반적인 반도체 공정을 이용하여 마이크론 스케일의 목을 갖도록 한 마이크로노즐을 제작하는 데 있다. 보쉬 공정은 이러한 마이크로노즐을 제작하는데 필수적인 공정으로, 유도결합플라즈마를 이용해 실리콘 웨이퍼를 식각시키는 기술을 말한다. 보쉬 공정에 사용되는 플라즈마 기체는 $SF_6$$C_4F_8$인데, 이 두 가지 기체를 번갈아가면서 사용하여 실리콘 웨이퍼를 이방성 식각하는 것이 그 특징이다. 보쉬 공정에는 다양한 변수가 존재하며 이를 적절히 통제하면 마이크로노즐에 적합한 프로파일을 실리콘 웨이퍼 내에 형성시킬 수 있다. 본 연구에서는 보쉬 공정을 이용하여 3차원 마이크로 노즐을 제작하였다. 기존에 반응성이온식각(deep reactive ion etching, DRIE) 공정을 통해 마이크로노즐을 제작한 사례가 많이 보고되었지만 이들은 모두 2차원적으로 마이크로노즐을 제작하였다. 2차원적으로 제작한 마이크로노즐은 마이크로 로켓에 주로 사용되었지만, 초음속으로 가속된 분말이 노즐의 형상으로 인한 유체 흐름의 불안정성 때문에 NPDS에서는 오래도록 사용할 수 없다는 문제점이 있다. 그러므로 본 연구에서는 마이크로노즐을 3차원 형상으로 제작함으로써 이러한 문제점을 해결하고자 하였다.

  • PDF

Design and Fabrication method of combustor for micro solid propellant thruster (MEMS 고체 추진제 추력기의 추진제실 설계와 구조체 가공 방법)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.251-254
    • /
    • 2006
  • Micro thruster is a key technology in the micro/nano satellite. MSPT has been attracted attention as a one of possible solution for micro thruster MSPT as a systems four components. It is composed of nozzle, igniter, combustion chamber and propellant. This paper surveys varioud MSPTs which have been reported. The model of MSPT arrays for total impulse of 1 mNs is proposed. Combustion chamber is designed and fabricated.

  • PDF

Development and Performance Validation of Integrated Bus Electronic Unit for Small Satellite (소형위성용 통합형 전장박스의 개발 및 성능검증)

  • Chang, Jin-Soo;Kim, Dong-Woon;Kang, Suk-Jin;Lee, Byung-Hoon;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.353-362
    • /
    • 2007
  • Unlike large satellites, small satellites, such as nanosatellite and microsatellite, can provide a limited interior space for components mounting. In order to mitigate this issue, the compact Bus Electronic Unit(BEU) that integrates satellite electronic modules, combining most of bus subsystems and payload electronic modules into one unit, has been developed for HAUSAT-2 nanosatellite. This paper addresses the design and environmental test result analyses of BEU. The vibration and thermal vacuum tests were conducted at qualification level for the verification of design margin of newly developed BEU. The performance of individual electronic subsystem modules has been verified through performance tests before and after the qualification tests. It was confirmed that the natural frequency of BEU satisfies the design stiffness requirement without structural damage in the vibration test. Thermal analysis results were also almost consistent with test results through modified thermal analysis modeling.

A Study on HAUSAT-2 Momentum Wheel Start-up Method (초소형위성 HAUSAT-2 모멘텀 휠 Start-up 방안 연구)

  • Lee, Byung-Hoon;Kim, Soo-Jung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.73-80
    • /
    • 2005
  • This paper addresses a newly proposed start-up method of the HAUSAT-2 momentum wheel. The HAUSAT-2 is a 25kg class nanosatellite which is stabilized to earth pointing by 3-axis active control method. A momentum wheel performs two functions. It provides a pitch-axis momentum bias while measuring satellite pitch and roll attitude. Pitch control is accomplished in the conventional way by driving a momentum wheel in response to pitch attitude errors. Precession control and nutation damping are provided by driving the pitch axis magnetic torquer. A momentum wheel is nominally spinning at a particular rate and changes speed. This simulation study investigates the feasibility and performance of a proposed strategy for starting-up the wheel. A proposed strategy to start-up the wheel shows that a pitch momentum wheel can be successfully started-up to its nominal speed from rest and be stabilized to nadir pointing.

Rapid Initial Detumbling Strategy for Micro/Nanosatellite with Pitch Bias Momentum System (피치 바이어스 모멘텀 방식을 사용하는 초소형 위성의 초기 자세획득 방안 연구)

  • Lee, Byeong-Hun;Choe, Jeong-Won;Jang, Yeong-Geun;Yun, Mi-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.65-73
    • /
    • 2006
  • When a satellite separates from the launch vehicle, an initial high angular rate or a tip-off rate is generated. B-dot logic is generally used for controlling the initial tip-off rate. However, it has the disadvantage of taking a relatively long time to control the initial tip-off rate. To solve this problem, this paper suggests a new detumbling control method to be able to adapt to micro/nanosatellite with the pitch bias momentum system. Proposed detumbling method was able to control the angular rate within 20 minutes which is significantly reduced compared to conventional methods. Since the previous wheel start-up method cannot be used if the detumbling controller proposed by this paper is used, a method is also proposed for bringing up the momentum wheel speed to nominal rpm while maintaining stability in this paper. The performance of the method is compared and verified through simulation. The overall result shows much faster control time compared to the conventional methods, and achievement of the nominal wheel speed and 3-axes stabilization while maintaining stability.

The establishment of requirement and kinematic analysis of mechanism for deployable optical structure (전개형 광학구조체용 메커니즘 요구조건 수립 및 후보 메커니즘의 기구학적 해석)

  • Jeong, Seongmoon;Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Kim, Sangwoo;Kim, Jangho;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.701-706
    • /
    • 2014
  • In these days, there have been numerous researches on nano and micro satellites under the slogan of "Faster, Smaller, Better, Cheaper". Since optical structure occupies large portion of satellite volume, research on deployable optical structure gains great attention to reduce total volume of the satellite. In this paper, we establish the requirement of deployable optical structure based on specification of conventional optical structure and propose two candidate mechanisms which can satisfy the degree of deployment precision. Then, in order to evaluate the degree of deployment precision, we carry out kinematic analysis on de-space among tilt, de-space and de-center which influences optical characteristic of a satellite.

Fabrication, Performance Evaluation of Components of Planar Type MEMS Solid Propellant Thruster (평판형 MEMS 고체 추진제 추력기 요소 제작 및 성능 평가)

  • Park, Jong-Ik;Kwon, Se-Jjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.581-586
    • /
    • 2008
  • The MEMS solid propellant thrusters have very low thrust level for applying to the propulsion system of micro/nano satellites or the side jet thruster of smart bombs. In this research, the fabrication possibility of planar type MEMS solid propellant thrusters that have enlarged burning surface area was examined and the safety of the structure of thruster during the firing test was confirmed. The performance of a micro igniter which is the key component of the MEMS solid propellant thruster was estimated by the ANSYS Icepak and evaluated by the experiment. Finally, the thrust was measured by the micro force sensor. The levels of thrust were 300, 600 mN in the case of K=15, 20.