• Title/Summary/Keyword: 마모시험

Search Result 352, Processing Time 0.019 seconds

The Influence of Traffic Time and Fertilizer Type on the Quality of Golf Course Putting Greens (답압시간과 비료종류가 골프코스 그린 잔디의 품질에 미치는 영향)

  • Lee, Sung-Woo;Lee, Jae-Pil;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • Traffic management is becoming an important issue in turfgrass practise on golf course. The objective of this study was to investigate the combined impact of different traffic times and types of fertilization. Traffic treatment was applied in morning (AM), noon, and afternoon (PM). Fertilizers used include faster-release fertilizer (21-17-17) and slow-release fertilizers (12-6-18, 11-3-22, 20-3-20, 10-3-10). Experiment was conducted from Oct. 1 to Nov. 30, 2005 on a nursery putting green of Incheon Grand Golf Club. The growth and quality of creeping bentgrass (Agrostis polustris cv. 'Seaside II') were evaluated on visual leaf color, leaf texture, shoot density, and root length. The measurement at 20 days after treatment, turfgrass color and leaf texture showed the best result on 10-15-10 + Noon-traffic plot. Turf quality and traffic tolerance were not different at Am and Pm traffic treatment. However, traffic stress in early morning and late evening caused the most severe damage to the turfgrass. Shoot density was the highest in 10-15-10 + Noon-traffic treatment but root length was not different among treatments after 30 day measurement. Among the fertilizers, slow release fertilizer resulted in higher turf quality and traffic tolerance than fast release fertilizer, however, shoot density did not showed a significantly different. For the fast recuperation of turfgrass from traffic injury in the early winter, it is recommended to avoid early morning and late evening traffic such as cup replacement and other maintenance practise. It is also recommended to delay the first tee-up time and ending early for last tee time during cold weather season.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.