• Title/Summary/Keyword: 마모센서

Search Result 46, Processing Time 0.019 seconds

Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler (유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구)

  • Gil, Doo-Song;Jung, Gye-Jo;Seo, Jung-Seok;Kim, Hak-Joon;Kwon, Chan-Wool
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Water wall tube is one of the major factors consisting of a fluidized bed boiler and it plays very important role for the generation of electricity within the boiler. But these water wall tubes within the fluidized bed boiler are subject to the ware and corrosion caused by the high temperature gas and the flowing medium. If water leak is occurred, the secondary damage by the water leak will occur. As a result of that, the power generation efficiency decreases noticeably. Therefore, the maintenance of the water wall tube is very important. In this study, we designed a exciter sensor based on simulation and composed a remote field eddy current system for the defect evaluation of the outer water wall tube. Starting from the shape design of exciter, we conducted simulations for various design factors such as the water wall tube size, material, frequency, lift-off and so on. Based on the results, we designed the optimum exciter sensor for the water wall tube test within the fluidized bed boiler.

Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network (인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘)

  • Kim, Young-Jin;Kim, Hyeong-Jun;Han, Jun-Young;Lee, Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

An Algorithm of Diagnosing Eccentricity in Single Stand Rolling Mill (디지털 필터를 이용한 단일 스탠드 압연기의 편심 진단 알고리즘)

  • 전재영;김현승;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • Ths paper presents an algorithm of detecting eccentricity signal and diagnosing the cause in rolling process. A designed technique uses only the outputs of load cell and tachorreter, which are generally utilized in rolling process, and need not any acklitional sensors. Detecting signals related to eccentricity is done by combining outputs of 6 digital bandPass filters whose center frequency are varied with roll's rotating frequency. A function of diagnosing the cause of occentricity from extracted data having occentricity components is implemented by defining reasonable variables. In order to show validity of an algorithm designed in this paper, simulation was accomplished for three groups. The first is that some portion of roll in the direction of roll circumference is distorted. The second is that rotating axis and roll center is not identical. The third is that composite cause is occmed Simulation results show that every kind of eccentricity can be diagnosed in terms of algorithm proposed.oposed.

  • PDF

A Study on Heat Treatment Characteristic of HPDL to Surface Hardening for Press Die(I) - Characteristics of Laser Heat Treatment on FCD550 for Drawing Process - (프레스 금형의 표면경화를 위한 고출력 다이오드 레이저의 열처리 특성에 관한 연구(I) - 드로잉공정 적용을 위한 FCD550 소재의 레이저 열처리 특성 -)

  • Kim, Jong-Do;Song, Moo-Keun;Lee, Chang-Je;Hwang, Hyun-Tae
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.95-95
    • /
    • 2010
  • 자동차 산업에서 차체를 성형하는 프레스 금형 산업은 꾸준히 증가하고 있는 자동차 생산대수와 함께 성장해가고 있으며, 자동차 산업의 국제 경쟁이 심해지고 소비자들의 요구가 다양해짐에 따라 신제품 개발주기에 발맞추어 금형의 제작에도 단납기 및 비용절감을 위한 노력과 제품의 품질 향상을 위해 신기술, 신공법이 적용되고 있다. 한편 자동차 차체를 제작하는 프레스 금형가공은 박판소재를 원하는 형상으로 제작하는 공정으로써, 프레스의 상 하 운동을 이용하여 강판을 성형한다. 이러한 금형의 형태는 곧 자동차 차체 제품의 형태를 완성하므로 제품을 성형하는 도중에 금형과 소재의 마찰에 의해 금형의 마모나 마멸이 발생하여 제품의 품질을 저하시킬 우려가 있다. 따라서 금형의 내마모성 및 수명을 향상시키기 위한 방안들 중 표면경화처리가 행해지고 있으며, 그중 공정 속도가 빠르고 국부적인 열처리가 가능한 레이저 표면처리 방법이 많은 관심을 받고 있다. 본 연구에서는 이러한 금형의 성질을 향상시키기 위해 고출력 다이오드 레이저를 이용하여 프레스 금형공정 중 드로잉(drawing) 공정에의 적용을 위한 표면경화처리를 실시하였다. 최대출력 4.0kW의 다이오드 레이저를 사용하였으며, 6축 외팔보 로봇에 열처리용 광학계를 장착하여 열처리를 실시하였다. 또한 광학계 부근에는 적외선 온도센서가 부착되어있어 열처리시 시험편의 표면온도를 실시간으로 측정할 수 있도록 구성되어져있다. 시험편은 금형재료용 구상흑연 주철인 FCD550 소재를 사용하였으며, 공정변수에 따른 열처리 특성을 파악하고, 그 경화특성을 평가하였다. 실험 결과, FCD550 소재의 표면 열처리시 레이저 출력 3.5kW, 빔 이송속도 3mm/sec에서 최적의 열처리 특성을 나타내었으며, 이때의 최고 경도는 930Hv을 나타내며 모재에 비해 경도가 3배 정도 상승하는 우수한 경화특성을 보였다.

  • PDF

Occlusion Effect of Dentinal Tubules of the Desensitizing Dentifrices Marketed in Korea (국내 시판중인 지각과민 완화 치약의 상아세관 폐쇄효과)

  • Lee, Su-Young
    • Journal of dental hygiene science
    • /
    • v.11 no.5
    • /
    • pp.431-436
    • /
    • 2011
  • The aim of this study was to compare the effects of the short-term use of the desensitizing dentifrices marketed in Korea in vitro. Fifty human dentine specimens were wet ground with silicone carbide paper and etched with 6% citric acid for 90 seconds to allow complete opening of the dentinal tubule. Ten specimens from each group were brushed for 50 and 150 strokes with a V8 Cross Brushing Machine(Sabri Co., U. S. A). All the specimens were evaluated by SEM(${\times}3000$). The degree of occlusion of the dentinal tubules was quantified using an image analyzer. The results were analyzed by one-way ANOVA and Tukey's multiple comparisons using Window SPSS. The dentifrices containing nano-carbonate apatite, potassium nitrate and hydroxyapatite showed significantly higher occlusion effects than the other dentifrices after toothbrushing for 50 strokes(p<0.05). The Sensodyne freshmint$^{(R)}$dentifrice showed 34% fewer open tubular areas compared with the Sensodyne original$^{(R)}$dentifrice for 50 strokes. According to the short-term use of desensitizing dentifrices, the dentifrices containing nano-carbonate apatite, potassium nitrate and hydroxyapatite were most effective in occluding the dentinal tubules.

Failure Analysis and Heat-resistant Evaluation of Electric Fuel Pump for Combat Vehicle (전투차량용 전기식 연료펌프의 고장분석 및 내열성능 평가)

  • Kwak, Daehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.634-640
    • /
    • 2020
  • Failure analysis and heat-resistant were performed for an electric fuel pump that is installed in the fuel tank to transfer fuel to the engine of combat vehicles. The fuel pump with a DC motor was disassembled and inspected to determine the cause of failure. The failure phenomenon was classified into three categories based on observations of the inside of the housing: burnt winding, quick brush abrasion, and fuel leak into the pump. Based on the inspection results, it was estimated that overheating was the main cause of failure. The thermal test was conducted under the no-load condition in 24 hours, and the thermal sensor was installed on the stator surface and the brush holder to check the possibility of damage to the winding due to overheating. When the ambient temperature of the fuel pump was set to 68 ℃, the stator temperature increased to 135.9 ℃, and the winding of the motor was almost damaged. The test results confirmed the lack of heat resistance of fuel pump windings, and suggested that the type F of insulation class (below 155 ℃) of the windings and varnish should be replaced with type C or higher that can be used above 180 ℃.