• Title/Summary/Keyword: 마멸 속도

Search Result 48, Processing Time 0.024 seconds

A Study on the Analysis of Tool-wear Patterns and Mechanisms in Face Milling (정면밀링에서 공구마멸 패턴과 메커니즘 분석에 관한 연구)

  • Jang, Sung-Min;Baek, Seung-Yub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2017
  • This paper provides an experimental analysis on the breakage of the coated tool using the face-milling cutter of the machining center due to changes in the cutting speed and the feed rate. The experimental studies were conducted using STS 304 materials and the damage to the tool was analyzed according to the change in machining time. The experiments confirmed that the cutting speed and feed rate affected the tool damage and the mechanical impact and thermal shock were determined to severely damage the tool. From the production engineering point of view, it has been experimentally investigated that the increased feed rate significantly influences the material removal rate more than the increased cutting speed.

A Study on the Ultrasonic Vibration Cutting of Hypereutectic Aluminum-Silicon Alloy (과공정 알루미늄 실리콘 합금의 초음파 진동 절삭에 관한 연구)

  • Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.170-177
    • /
    • 1999
  • 과공정 알루미늄 실리콘 합금 (Hypereutectic Al-Si Alloy, A390)은 내마멸성 및 우수한 강성에 의해서 자동차 부품에 많이 사용되고 있다. 본 연구에서는 초음파 진동 절삭에 의한 과공정 알루미늄 실리콘 합금의 가공성과 실리콘 석출의 실험적 연구를 수행 하였다. 최적 공구와 가공조건의 선정 실험을 통하여 보다 효과적인 초음파 진동 절삭을 수행하였으며, 과공정 알루미늄 실리콘 합금의 가공 표면거칠기와 실리콘 석출은 절삭속도와 절삭깊이와 밀접한 연관성을 갖고 있다.

  • PDF

Characteristics of Roundness Using Die-sinking Electrical Discharge Machining by Circular Electrode (원형전극봉에 의한 형조방전가공시 진원도 특성)

  • 우정윤;왕덕현;김원일;이윤경;김종업
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.245-250
    • /
    • 1999
  • The experimental study of die-sinking electrical discharge machining for alloy tool steel of STD-11 with circular electrode was conducted for various conditions of the peak current and duty factor with the change of internal size of electrode for distributing the amount of dielectric flow through the electrode. From this study, the material removal rate(MRR) was found to be increased with the peak current and duty factor. The more MRR was obtained for the case of electrode inside diameter of 10mm. The surface roughness and roundness values were analyzed regularity under various conditions, and these values were not affected by the inside diameter change of electrode.

  • PDF

An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob (TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가)

  • Cheon, Jong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420 steel tempered after performing gear hove PACVD carbide coating on the surface after the cutting surface hardness was high. Difficult-to-cut, without coating is classified as mild as large, including materials like mild, high strength that improves tool life and productivity have limited availability. Drive to improve it in the TiCN-coated carbide call for war to the finish coating on cutting a hob skiving good workability, tool wear less, 2.5-fold increase in tool life results were obtained. Experiments using CNC Skiving hobbing machine with wet cutting conditions, cutting speed and feed rate to apply a variety of the tool wear and surface roughness data were obtained. Results from condition 2 (V = 200m/min F = 0.7mm/rev) cutting speed feed mark the cutting surface microstructure and surface roughness Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$) of the data was obtained.

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

Drill 가공에 있어서 ADI 재료의 절삭성에 관한 연구

  • 조상순;장성규;조규재;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.126-130
    • /
    • 1993
  • 소경드릴가공은 많은 기계가가공중에서도 가장 곤란한 가공의 하나이다.그것은 가공구멍단면 이하의 공간속에서 공구강성이나 칩처리들이 고려되어야 한다는 엄격한 제한이 소경이란 형태에서 한층 어려워지기 때문이다.소경의 구멍가공은 최근 전자제품,우주항공기 부품,소형정밀부품, 섬유산업의 광섬유관련품 등에 까지 수요가 증가함에 따라 레이져가공,전자빔가공,전해가공과 같은 전기물리적가공법이 많이 사용되고 있지만 생산성 및 가공정밀도의 관점에서 만족스러운 결과를 얻을 수 없는 실정이다, 이에반해 기계가공인 소경드릴가공은 공구강성저하로 인해 쉽게 파손된다는 점은 있지만 가공정도가 양호하고 종횡비가 높은 가공이 가능하여 실용화가 가장 좋은 분야라고 할수 있다. 이로 인해 최근에는 여기에 관한 많은 연구가 지행되고 있다. 또한 기계가공의 자동화가 진전됨에 따라서 단일공국의 대표적 공구인 바이트의 결함을 검출하는것 못지않게 드릴의 마멸이나 절손의 검출 또는 예측이 중요한 문제로 부각됨에 따라 절삭저항의 이용이 증가할 것으로 생각된다. 따라서 본 연구에서는 ADI에 포함된 Si량이 드릴가공시 ADI의 피삭성에 미치는 영향을 절삭조건을 변화시켜 고찰함과 동시에 공구수명에 대하여 고찰하였다.

  • PDF

Cutting of Magnetic Cu Ferrite (Cu 페라이트의 절삭가공)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.71-77
    • /
    • 1999
  • In this study, Cu ferrite was machined with cermet tool to clarify the machinability. The main conclusions obtained were as follows. The tool wear becomes the smallest at the cutting speed of 90m/min with the depth of cut of 0.2mm. The surface roughness becomes larger with increasing the cutting speed and the chamfer angle. The tool with the chamfer angle of $15{\circ}$ shows the best performance. The surface roughness increases almost proportionally with the increase of the chip size. The tool wear decreases with increasing feed in the depth of cut not more than 0.2mm.

  • PDF

시일의 마멸로 인한 다단터빈펌프의 위험속도 변화

  • Kim, Yeong-Cheol;Lee, Dong-Hwan;Lee, Bong-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.203-209
    • /
    • 1998
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on Its system behavior. Stiffness and damping coefficients of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annular seals are calculated as functions of rotating speed as well as seal clearance. As the clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in nitration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Effect of Deformation Properties at the Contact Surfaces on the Wear Rate (접촉면에서의 변형특성이 마멸속도에 미치는 영향)

  • 이영호;김인섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.115-121
    • /
    • 2001
  • The wear test has been performed to evaluate the wear mechanism of steam generator (SG) tube materials against ferritic stainless steel in water environment. The wear rates of SG tube materials depend on the change of mechanical properties between contact surfaces during wear test. From the subsurface hardness test, Inconel 690 is more work-hardened than Inconel 600 even though these materials have similar hardness values before the wear test. Main cause is due to the difference of stacking fault energy with the chromium content. In water environment, wear mechanism is closely related with the continuous formation and fracture of deformation layers at the contact surfaces.

  • PDF

The Effects of Sliding Speed and Load on Tribological Behavior of Ceramics in Line-contact Sliding (선접촉시 세라믹의 마찰 및 마멸 특성에 미치는 속도와 하중의 영향)

  • 김영호;이영제
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.35-44
    • /
    • 1995
  • Within the practical ranges of speed and load, the formation of transfer films and the consequent effects on the friction and wear behavior of ceramic materials during repeated pass sliding contact were studied. These tests were done using $Al_{2}O_{3}$, SiC and $Si_{3}N_{4}$ with the cylinder-on-flat test configuration. The three pairings behaved differently, even if some wear mechanisms were common to the three systems. The $Al_{2}O_{3}$ pair showed the least wear in overall conditions, followed by the $Si_{3}N_{4}$ pair in harder sliding conditions. The wear of SiC was very high at severe loading. In case of $AL_{2}O_{3}$ and $Si_{3}N_{4}$, the transfer film, whenever formed, is strongly attached, enough to resist being wiped off by the slider. As a consequence, the formation of this f'fim leads to a decrease in the wear rate because of the protecting role of the film. The presence of the film at the contact interface also results in high friction. Also, the wear rate of each ceramics is related to the frictional power provided by load, speed and friction.