• Title/Summary/Keyword: 마멸 거동

Search Result 64, Processing Time 0.026 seconds

The Study on the Wear-Corrosion Behavior of Ductile Cast Iron in the Acidic Environment (산성환경 중에서 구상흑연주철재의 마멸-부식거동에 관한 연구)

  • Lim, Uh-Joh;Park, Dong-Gi;Yun, Byoung-Du
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.96-102
    • /
    • 2002
  • This paper was studied on the wear-corrosion behavior of ductile cast iron in the acidic environment. In the dry atmosphere and variety of pH solution, wear-corrosion characteristics and friction coefficient of GCD 60 with various sliding speed and distance were investigated. And electrochemical polarization test of GCD 60 was examined in the environment of various pH value. The main results are as following : In the dry atmosphere, boundary friction appears below nearly 5 $kg_{f}$ of contact load, and it is considered that solid friction occurs over nearly 5 $kg_{f}$ of contact load. As pH value becomes low, wear-corrosion loss in the aqueous solution increases. As the corrosion environment is acidified, corrosion potential of GCD 60 becomes noble, polarization resistance becomes low, and corrosion current density increases.

  • PDF

Analysis of Wear Behaviour Corresponding to Contact Shape in High Temperature and High Pressure Environment (고온고압수중에서 접촉형상에 따른 마멸거동 분석)

  • Song Ju-Sun;Kim Hyung-Kyu;Lee Young-Ho;Kim Jae-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.31-36
    • /
    • 2004
  • In this paper, fretting wear tests were conducted in air at room temperature (RT) and in water at high temperature and high pressure (HTHP) environment to analyze the wear characteristic. As for the supporting condition between the tube and spring/dimple, the gap of 0.2 mm in air at RT and the normal force of 10 N and the slip of $50\;{\mu}\;m$ in water at HTHP were applied. Four different shapes of spring/dimple specimen (type A, B, C, D) were used. Detail eaxamination of wear scar was also performed using SEM micrographs. As a result, in the case of the spring of truncated wedge, severer wear occurs than the others. Protrusion part was found and larger in air at RT. It is thought that the difference in the wear volume and the protrusion is caused by the different wear mechanism corresponding to the different environment.

  • PDF

Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process (누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동)

  • Kim Y.S.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).

Sliding Wear and Friction Behavior of Electro-Pressure Sintered Co-Fe and Co-Ni Compacts (통전가압 소결된 Co-Fe, Co-Ni 소결체의 미끄럼 마찰 및 마멸거동)

  • Kwon Yong Jin;Kim Tai-Woung;Kim Yong-Suk
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.451-461
    • /
    • 2004
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe and Co-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered Co-Fe, Co-Ni disks against alumina $(Al_2O_3)$ and silica $(SiO_2)$ balls at various loads ranging from 3N to 12N. A constant sliding speed of 0.1m/sec was employed. Wear rate was calculated by dividing the weight loss of a specimen by the measured specific gravity and sliding dis-tance. Worn surfaces and cross-sections of the specimens were examined using an SEM and EDS to investigate wear mechanism of the compacts. The wear behavior of the compacts were discussed as a function of their com-position. Effects of mechancial properties of the compact as well as oxide layers formed on wearing surface on the wear were also discussed.

The Study on the Wear-Corrosion Behavior of Al-Mg Alloy in the Coast (연안해안에서 Al-Mg 합금재 프로펠러의 마멸-부식거동에 관한 연구)

  • Park Hee-Ok;Lim Uh-Joh;Park Dong-Gi
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.97-101
    • /
    • 2004
  • This paper reports the studies on the wear-corrosion behavior of Al-Mg alloy in various pH environments. In various pH of sea water, corrosion and wear-corrosion loss of Al-Mg alloy were investigated. Also, the polarization test of Al-Mg alloy using potentiostat/galvanostat was carried out. And the rubbed surface of Al-Mg alloy using scanning electron micrographs after wear-corrosion test was examined in various pH values of sea water. The main results are as following : The polarization resistance of Al-Mg alloy in pH 4 solution is higer than that in pH 6.7 solution, and the corrosion current density in pH 4 is controlled than in pH 6.7 solution. The wear-corrosion loss of Al-Mg alloy with lowering pH becomes sensitive. As the oxide product of Al-Mg alloy appears granular structure and exholiation phenomenon, wear-corrosion loss of Al-Mg alloy increases.

Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation (가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동)

  • Yu, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

The Effect of Cementite Morphology and Matrix-ferrite Microstructure on the Sliding Wear Behavior in Spheroidized High Carbon Steel (구상화 열처리된 고탄소강의 미끄럼 마멸 거동에 미치는 시멘타이트 형상과 페라이트 기지조직의 영향)

  • Hur, H.L.;Gwon, H.;Gu, B.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.96-101
    • /
    • 2016
  • The current study was conducted to elucidate the effect of cementite morphology and matrix-ferrite microstructure on sliding wear behavior in spheroidized high carbon (1wt. % C) steel. The high carbon steel was initially heat treated to obtain a full pearlite or a martensite microstructure before the spheroidization. The spheroidizing heat treatment was performed on the full pearlitic steel for 100 hours at 700℃ and tempering was performed on the martensitic steel for 3 hours at 650℃. A spheroidized cementite phase in a ferrite matrix was obtained for both the full pearlite and the martensite microstructures. Sliding wear tests were conducted using a pin-on-disk wear tester with the heat treated steel as the disk specimen. An alumina(Al2O3) ball was used as the pin counterpart during the test. After the spheroidizing heat treatment and the tempering, both pearlite and martensite exhibited similar microstructures of spheroidized cementite in a ferrite matrix. The spheroidized pearlite specimens had lower hardness than the tempered martensite; however, the wear resistance of the spheroidized pearlite was superior to that of the tempered martensite.

Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers (PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동)

  • Kang S. H;Kim Y. S
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

Sliding Wear Behavior of Pure Metal, Fe and Cu Having a Cubic Crystal System (입방정계 순 금속 Fe, Cu의 미끄럼 마멸 거동)

  • Yi, S.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.357-362
    • /
    • 2010
  • Dry sliding wear behavior of pure Fe and Cu which have BCC and FCC crystal structure, respectively, was investigated. The wear characteristics of the pure metals with different crystal structure were compared. Dry sliding wear tests were carried out using a pin-on-disk wear tester at various loads under the constant sliding speed condition of 0.15 m/s against a silica ball at room temperature. Sliding distance was fixed as 600 m for all wear tests. Wear rate of a specimen was calculated by dividing the weight loss of the specimen after the test by the specific gravity and sliding distance. Worn surfaces and wear debris were analyzed by SEM. The wear of both pure Fe and Cu proceeded with surface deformation, resulting in similar wear rates despite of their structure difference under the current test conditions. Wear rates of both metals were low if the surface deformation due to wear forms thick surface-deformation layer that is strain hardened beneath the wearing surface. The pure Cu specimens showed a lot of oxides on the worn surface when tested at low loads less than 5 N, which resulted in very low wear rate.

Sliding Wear Characteristics of the Fe-17Mn Alloy with Various Phases (Fe-17M 합금의 상에 따른 미끄럼 마멸 거동의 변화)

  • Lee J. E.;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • It is reported that $\varepsilon$ (HCP) and $\gamma$ (FCC) phases of a Fe-17Mn alloy transform to $\alpha'$ phase, which has BCC structure, under a deformation condition. In this study, we investigated the effect of strain-induced-transformed $\alpha'$ phase on sliding wear of the Fe-17Mn alloy that originally had e and y phases. Wear tests of the materials were carried out using a pin-on-disk wear tester at various loads of 0.5N-50N under a constant sliding speed condition of 0.38m/s against glass $(83\%\;SiO_2)$ beads. The sliding distance and radius were loom and 9 mm, respectively. Wear rate of the Fe-17Mn alloy was calculated by dividing the weight loss, measured to the accuracy of $10^{-5}g$ by the measured specific gravity and sliding distance. Worn surface and wear debris of the specimens were examined using an SEM and XRD. During the wear, $\alpha'$ phase of BCC structure was formed by strain-induced transformation when the applied wear load exceeded critical values. The $\alpha'$ phase formed by the strain induced transformation increased the wear rate of the Fe-17Mn alloy.

  • PDF