• Title/Summary/Keyword: 마리넬리 구조

Search Result 2, Processing Time 0.018 seconds

A Practical and Simple Method of Self-absorption Correction for Environmental Samples (실용적이고 간단한 환경시료의 감마핵종 자체흡수보정 방법)

  • Lee, Wan-No;Lee, Haeng-Pil;Chung, Kun-Ho;Cho, Young-Hyun;Choi, Geun-Sik;Lee, Chang-Woo;Chung, Hyung-Wook;Lee, Eun-Ju;Sho, You-Sup;Lee, Jong-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • A self-absorption correction is important issue for the exact radioactivity determination of gamma emitting radionuclides in environmental samples which have the range of apparent density from $0.3g/cm^3$ up to $1.5g/cm^3$. In this paper, a practical and simple method without radioactive standard solutions having various densities is proposed for the self-absorption correction of environmental samples by a developed outside beaker surrounding Marinelli beaker. For the densities of 0.8, 1.0, $1.3g/cm^3$, the corrected efficiencies by the new method and the measured those by radioactive standard solutions of the three densities showed good agreement within 4 %.

A Study on the Validation of Effective Angle of Particle Deposition according to the Detection Efficiency of High-purity Germanium Gamma-ray Detector (고순도 저마늄 감마선 검출기의 검출효율에 따른 유효입체각 검증에 관한 연구)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.487-494
    • /
    • 2020
  • The distance between the source and the detector, the diameter of the detector, and the volume effect of the radiation source result in a change in solid angle at the detector entrance, which affects the determination of detection efficiency by causing a difference in path length within the detector. A typical analysis method for calculating solid angles was useful only for a source (60Co) with a simple geometric structure, so in this experiment, the distance between the detector and the source was measured by switching on for up to 25 cm with the reference point of window cap 0.5 cm. In addition, 450 and 1000 ㎖ Marinelli beaker of standard volumetric sources were closely adhered to the detector. For circular point sources co-axial with the detector, the change in the solid angle to the distance from the detector window is equal to half the square radius of the source versus the square radius of the detector, if the resulting relationship of the calculation analysis results in the detector being less than the radius of the source. Since the solid angular difference is 0.5 the result of Monte Carlo is acceptable. The relationship between detector and source distance is shown. Solid angles have been verified to decrease rapidly with distance. Measurement and simulation results for a volumetric source show a difference of ±1.01% from a distance of 0 cm and less than 4 % when the distance is reduced to 5 and 10 cm. It can be seen that the longer distance, the smaller efficiency angle, and the exponential increase in attenuation as the energy decreases, is reflected in the calculation of efficiency. Thus, the detection efficiency has proved sufficient for the use of solid angle and Monte Carlo codes.