• 제목/요약/키워드: 마르코프 체인 몬테 카를로 시뮬레이션

검색결과 2건 처리시간 0.016초

MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템 (MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle)

  • 최배훈;안종현;조민호;김은태
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.186-190
    • /
    • 2015
  • 지능형 자동차는 주변 환경에 대한 인식을 바탕으로 동작을 계획하고 움직인다. 따라서 정확한 환경 인식은 자율 주행 자동차의 필수 요소로 여겨진다. 차량의 주행 환경은 차량이나 보행자 같은 동적인 장애물이 다수 존재하여, 안전한 동작을 위해 이런 동적 장애물에 대한 인식이 정확하게 이루어져야 한다. 이를 위해 센서의 불확실성을 극복하는 일이 필수적이다. 본 논문에서는 레이더 센서를 이용하여 다수의 차량을 인식하고 추적하는 알고리즘을 제안한다. 제안된 추적 시스템은 몇 가지 특징을 갖는다. 레이더 센서가 차량을 계측할 때, 그 데이터가 양 모서리에서 주로 나타나는 특징을 혼합 밀도 네트워크로 표현하고, 이렇게 표현된 레이더 데이터의 확률적인 분포를 파티클 필터의 가중치 계산에 적용하여 추적 알고리즘을 수행하였다. 또한, 파티클 필터가 갖는 차원의 저주를 극복하고 시간의 흐름에 따라 그 숫자가 변화하는 다수 대상체의 상태를 예측하기 위해 가역 점프 마르코프 체인 몬테 카를로 (RJMCMC)를 통한 샘플링을 적용하였다. 제안된 알고리즘은 시뮬레이션을 통해 검증되었다.

베이지언 추론에 기반한 확률론적 피로수명 평가 (Stochastic Fatigue Life Assesment based on Bayesian-inference)

  • 박명진;김유일
    • 대한조선학회논문집
    • /
    • 제56권2호
    • /
    • pp.161-167
    • /
    • 2019
  • In general, fatigue analysis is performed by using deterministic model to estimate the optimal parameters. However, the deterministic model is difficult to clearly describe the physical phenomena of fatigue failure that contains many uncertainty factors. With regard to this, efforts have been made in this research to compare with the deterministic model and the stochastic models. Firstly, One deterministic S-N curve was derived from ordinary least squares technique and two P-S-N curves were estimated through Bayesian-linear regression model and Markov-Chain Monte Carlo simulation. Secondly, the distribution of Long-term fatigue damage and fatigue life were predicted by using the parameters obtained from the three methodologies and the long-term stress distribution.