• Title/Summary/Keyword: 마그네시아 인산염 시멘트 복합체

Search Result 3, Processing Time 0.016 seconds

Early-Age Compressive Strength of Magnesia-Phosphate Composite with Phosphate Type (인산염 종류에 따른 마그네시아-인산염 복합체의 초기 압축강도 특성)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.185-186
    • /
    • 2016
  • Four mortar mixes tested to evaluate the early-age compressive strength of magnesia-phosphate composite with phosphate type. Monopotassium phosphate, dipotassium phosphate, ammonium dihydrogen phosphate and diammonium phosphate used as phosphate. Test results show that the compressive strength of mortar used monopotassium phosphate as phosphate was highest, while compressive strength of mortars used dipotassium phosphate and diammonium phosphate as phosphate were not developed.

  • PDF

Fundamental Properties of Magnesia-Prosphate Composite Considering Mix Conditions and Curing Temperature (배합조건 및 양생온도에 따른 마그네시아 인산염 복합체의 기초물성 평가)

  • Cho, Hyun Woo;Kang, Su Tae;Shin, Hyun Seop;Lee, Jang Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.163-170
    • /
    • 2012
  • With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weathers. And it can be hardened more quickly if the field temperature is properly compensated by heating. Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. While the addition of a large amount of anti-freeze agent is effective to prevent concrete from freezing and accelerates cement hydration resulting in shortening the setting time and enhancing the initial strength, it induces problems in long-term strength growth. Also, it is not economically feasible because most anti-freeze agents are mainly composed of chlorides. Recent studies reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperatures, which can be used as an alternative of cold weather concrete for cold weathers and very cold places. As a preliminary study, to obtain the material properties, mortar specimens with different mixture proportions of magnesia-phosphate composites were manufactured and series of experiments were conducted varying the curing temperature. From the experimental results, an appropriate mixture design for cold weathers and very cold places is suggested.

Physical Properties of Artificial Interior stone Using Waste Resources (폐자원을 활용한 내장용 인조석재의 물리적 특성)

  • Yoo, Yong-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.237-243
    • /
    • 2014
  • The environmental problem is serious due to global warming In a concrete industry, the effort to reduce the problem of the destruction of environment arising from the indiscriminate use of limestone that is the raw material of cement and aggregate and the exhaustion of resources are continually emphasized In this research, the waste porcelain and waste glass that are the natural aggregate substitute materials were mixed and were applied. In addition, the magnesia phosphate composite and fly ash are mixed with a cement substitute material and the properties of the artificial stone was examined. Density, water absorption, rate of aggregate on the surface, compressive strength, and flexural strength were performed. As a result of the test, it is that waste glass with 60% and waste porcelain with 70% are the most excellent mix to produce the artificial stone.