• Title/Summary/Keyword: 링형 결함 접지면 구조

Search Result 3, Processing Time 0.016 seconds

Implementation and Design of the Voltage Controlled Oscillator Using Ring type DGS Resonator (링형 DGS 공진기를 이용한 전압제어 발진기의 설계 및 구현)

  • Kim, Girae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2589-2594
    • /
    • 2012
  • In this paper, a novel resonator using ring type DGS is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8 GHz band is designed using proposed DGS resonator. The ring type DGS resonator is composed of DGS cell etched on ground plane under $50{\Omega}$ microstrip line. At the fundamental frequency of 5.8 GHz, 7.6 dBm output power and -82.7 dBc@100kHz phase noise have been measured for oscillator with ring type DGS resonator. We designed the voltage controlled oscillator using proposed the DGS resonator with varactor diodes placed between gaps of DGS. Thus, due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

RF Oscillator Improved Characteristics of Phase Noise Using Ring type DGS (위상잡음을 개선한 링형 DGS 공진기를 이용한 RF 발진기)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1581-1586
    • /
    • 2012
  • In this paper, a novel resonator using ring type DGS is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8GHz band is designed using proposed DGS resonator. The ring type DGS resonator is composed of DGS cell etched on ground plane under $50{\Omega}$ microstrip line. At the fundamental frequency of 5.8GHz, 7.6dBm output power and -82.7 dBc@100kHz phase noise have been measured for oscillator with ring type DGS resonator. The phase noise characteristics of oscillator is improved about 9.5dB compared to one using the general ${\lambda}/4$ microstrip resonator. Because it is possible that varactor diode or lumped capacitor is placed on the gaps of ring type DGS, resonant frequency can be controlled by bias voltage. We can design voltage controlled oscillator using proposed ring type DGS resonator. Thus, due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Development of Quad-Band Printed Monopole Antenna Using Coupling Effect of Dual Rectangular Rings and L-Slots on the GND (이중 사각 링 패치 결합효과와 접지면 L-슬롯을 이용한 4중 대역 인쇄형 모노폴 안테나 개발)

  • Shin, Yong-Jin;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1040-1049
    • /
    • 2014
  • In this paper, a quad-band antenna for DCS1800, PCS1900, WCDMA, WLAN and Mobile WiMAX application is proposed. The proposed antenna is a printed monopole structure, and consists of two rectangular ring-shaped radiating patches on the front side and two different size of L-shaped slots on the back side(ground plane). Two rectangular ring radiation patches are respectively resonant at 2 GHz and 3.5 GHz bands, and additional resonance is occurred at 5.3 GHz by the coupling effect between two ring patches. In addition, the optimized matching characteristic is obtained by controlling the gaps. Also, by adding two L-slots on the ground plane, additional resonant frequency band of 5.6 GHz is occurred. Finally the measured bandwidths of the proposed antenna below -10 dB return loss are 1,200 MHz(1.6~2.8 GHz), 800 MHz(3.2~4.0 GHz), 300 MHz(5.14~5.44 GHz), and 690 MHz(5.56~6.25 GHz). The radiation patterns have the omni-directional characteristic, and the measured antenna average gains at resonant bands are 0.86~4.07 dBi.