• Title/Summary/Keyword: 린6시그마

Search Result 13, Processing Time 0.021 seconds

A Study on the Quality Improvement of Mechanical Drawing Notes Using Lean 6 Sigma Analysis (린 6시그마 분석을 통한 도면 주기 품질 향상 방안 연구)

  • Jeon, Yong Gu;Huh, Hyoung Jo;Lee, Seong Bae;Park, Hun Hyuk;An, Byung Guk
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.381-393
    • /
    • 2020
  • Purpose: The purpose of this study was to find useful solutions by analyzing causes and results about defects on mechanical drawing notes and provide an automated tool with solutions to mechanical engineers. Methods: The collected data for defects on mechanical drawing notes were from ongoing development and mass production projects. Various measurement methods were used based on the Lean 6 Sigma analysis such as Process analysis, C&E diagram and some statistical analysis. Results: The results of this study are as follows; The results of the Lean 6 Sigma analysis, the validity of the selected indicators for improving drawing notes quality was verified through the verification of cause variables. The strategy established to improve the mechanical drawing notes was reflected as an automated program, and the defects were within a manageable range and achieved target Sigma level. Conclusion: Through the application of the "Mechanical drawing notes automation tool", it is expected to resolve the "Voice of Customer, VOC" and "Voice of Business, VOB".

Literature Review of Key Success Factors of Management Innovation Actions in Domestic - Focused on Six Sigma, TQM, Lean Six Sigma, ERP, TPM, BPR, Project Management, System Engineering - (국내 경영혁신 활동의 핵심 성공요인 문헌 연구 - 6시그마, TQM, 린 6시그마, ERP, TPM, BPR, Project Management, System Engineering 중심으로 -)

  • Mun, JeOk;Yoon, SungPil
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.639-648
    • /
    • 2016
  • Purpose: Existing precedent studies include success factors of individual management innovation activities constantly. However, those studies have limitations about the common key success factors of individual management innovation activities. Methods: For this study, we investigate the key success factors using literature research of the most typical management innovation activities adopted and implemented by many companies in Korea, such as 6sigma, TQM, Lean 6sigma, ERP, TPM, BPR, Project Management, System Engineering. Factors emerging repeatedly was combined into common factors and inherent factors that are necessary for the success of individual management innovation activities are designated to essential factors. Results: 'Essential factors for Six Sigma' consist of 5 items. Black belt operating system, personnel management system linkage, the correct management of the data, perform improvement projects associated with financial performance financial result, linked to financial performance improvement project, project progress management. 'Essential factors of TQM' are arranged 4 items. Quality team's independence and role, goal-setting, Quality Information System, corporate's philosophy of quality first. 'Essential factors of Lean Six Sigma' are the selection of value stream which is based on the customer needs and the value creation and identify the project based on the selected value in the company. 'Essential factors of ERP' are investigated 6 items. Ongoing system maintenance and upgrades, the measurement and support of user satisfaction, the operating systems and the policies for the maintenance, IT infrastructure, change adaption condition monitoring, focusing on improving business performance. 'Essential factors for TPM' are arranged 4 items. Motivated and energetic Bottom-Up, CEO's recognition of the importance facility management, long-term perspective of necessity and ongoing patience. 'Essential factors for BPR' are the pursuit of change process and the staff's sense of crisis management. 'Essential factors for Project Management' are the strategy that reduce the risk management skills through risk management and the understanding and organized management for the project participant's needs. 'Essential factors for System Engineering' consist of 2 items. The first is the design for the best balanced system with pre-analysis about the compromise the cost, schedule and the performance. The second is the analysis of large problem into small problems which can solved. We have found the solution considering components of the interface through the systematic perspective. Conclusion: Common factors and essential factors presented in this study will properly help to introduce the individual management innovation activities for the each business sector and implement management innovation. After this study, new literature research that reflect new studies should accomplish steadily.

A Study on the Process Quality Level of K5 Gas Mask (K5 방독면 공정품질 수준에 관한 연구)

  • Kim, Suk Ki;Byun, Kisik;Lee, Sang Yeob;Park, Jae Woo;In, Chi Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • This study investigated the process quality level of a K5 gas mask, which recently acquired its operational capability, through statistical process analysis for the mass production stages and their lots. The tensile adhesion strength was the only operating requirement in the manufacturing process of the K5 gas mask. For this purpose, the results of tensile adhesion strength between the lens and facial rubber during the initial and second mass production stages were analyzed using conventional statistical and statistical process analysis methods. The conventional statistical results indicated that the second mass production stage was better than the initial mass production stage. In cases of a control chart and process capability of tensile adhesion strength, the process quality level was also improved by following the mass production stages. The improvement was caused by process stabilization and work skill elevation. These results and methods are expected to be conducted and utilized in the third mass production stage. Moreover, quality improvement of K5 gas mask mass production can be achieved using the Lean 6 sigma procedure, MDAIC (Define, Measure, Analyze, Improve, Control).