• Title/Summary/Keyword: 리파제

Search Result 75, Processing Time 0.025 seconds

Studies on the Development of Cocoa Butter Equivalent Fat by Reverse - Micelle Enzyme Reaction System (역마이셀-효소반응계에 의한 코코아 버터 대용지 개발에 관한 연구)

  • Yoon, Seung-Heon;Shin, Woong-Kyu;Lee, Yoon-Hyung;Rhee, Kyu-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 1992
  • Production of cocoa butter equivalent fat (CBE) from palm oil and stearic acid by reverse micelle lipase reaction system was studied. Qualitative and quantitative analyses of triglycerides were performed by HPLC. The reaction conditions for maximum conversion from triolein and stearic acid to 1-stearoyl-2,3-dioleoyl glycerol(SOO) and 1,3-distearoyl-2-oleoyl glycerol(SOS) were as follows: a molar ratio of water/Aerosol OT, 10; triolein, 30 mM; stearic acid, 90 mM; pH, 7.5; and temperature, $50^{\circ}C$. By lipase in reverse micellar system containing palm oil and stearic acid, 1,3-dipalmitoyl-2-oleoyl glycerol(POP), 1-palmitoyl-2,3-dioleoyl glycerol(POO) and SOO decreased, but large amounts of 1-palmitoyl-2-oleoyl-3-stearoyl glycerol(POS) and SOS was formed.

  • PDF

Investigation of Acyl Chain Specificity of Lipase-OF 360,000 on the Hydrolysis of Fish Oil (물고기 기름의 가수분해에 대한 리파제 Lipase-OF 360,000의 아실체인 특이성 규명)

  • Park Ji-suk;Kim Han-Ok;Kho Hye-won;Hur Byung-Ki
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.489-493
    • /
    • 2004
  • The hydrolysis characteristics of various fatty acids composing the fish oil was investigated for function of acyl chain specificities using Lipase-OF 360,000 from Candida cylindracea. The hydrolysis of fatty acids decreased with the increase of the number of carbon and double bond in the fatty acids, in case that the number of double bond and the position of the first double bond from the methyl group of fatty acids were the same. The position of the first double bond was found to be an acyl chain specificity of Lipase-OF 360,000 for the hydrolysis of fish oil. Lipase-OF 360,000 also showed the another acyl chain specificity that the increase of double bond of fatty acids, having the same number of carbon and the position of double bond, brought about the decrease of hydrolysis.

Study of Serum Constituents in Several Species of Cultured Fish (주요 양식 어류의 혈액 성분에 관한 연구)

  • JEON Joong-Kyun;KIM Pyong Kih;PARK Yong-Joo;HUH Hyung-Tack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • This study was performed to obtain the basic data on the serum components of several marine fish species commonly cultured in Korea. Blood samples taken from five species of fish were analyzed for various components of serum, total protein (TP), albumin (ALB), triglyceride (TG), cholesterol (CHOL), glucose (GLC), sodium (Na). Potassium (K), chloride (Cl), Phosphorus (P), lipase (LIPA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The fish used were coho salmon(Oncorhynchus kisutch), rock fish (Sebastes schlegeli), sea bass (Lateolabrax japonicus), olive flounder ( Paralichthys olivaceus) and parrot fish (Oplegnathus fasciatuss) reared at the Chungmu Experimental Fish Culture Satation of KORDI. TP concentration of warm-water species (2.9-5.1 g/dl) was higher than that of cold-water species, and ALB concentration was ranged at the level of 1.2-1.9 g/dl. Coho salmon showed the highest ration of A/G(1.1), and the other species were about 0.5-0.6. The concentrations of TG and CHOL, components of lipids, varied with the different species. The concentration of TG was high, but CHOL concentration was low in olive flounder, while the reversed results were shown by sea bass. The sum of these two components was the highest with 600mg/d1 in olive flounder, and about 400mg/d1 for sea bass and rock fish, and 300mg/d1 for parrot lish and coho salmon. Concentration ot GLC in coho salmon and rock fish ranged from 61 to 76mg/d1 which were about lour times higher than that of flounder. The highest lipase activity was observed in coho salmon, while it was nearly nil in flounder. The reversed tendency was found for TG concentration. Mineral concentrations of Na, Cl and K were 160-204 mmol/l, 137-183mmo1/1 and 0.5-3.1 mmol/l, respectively, but no significant difference between the species was observed. However, the concentrations of P were high in relatively active species such as coho salmon and rockfish. AST activity in all species examined was higher than that of ALT with being highest in coho salmon. The highest ALT activity was found in olive flounder.

  • PDF

Phospholipase C-γ Activation by Direct Interaction with β-Tubulin Isotypes (베타 튜불린에 의한 포스포리파제 C-감마1의 활성화)

  • Lee, In-Bum;Kim, Sung-Kuk;Choi, Jang-Hyun;Suh, Pann-Ghill;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.612-617
    • /
    • 2006
  • Phosphoinositide-specific phospholipase $C-{\gamma}\;1\; (PLC-{\gamma}\;1)$ has pivotal roles in cellular signaling by producing second messengers, inositol 1,4,5-trisphosphate $(IP_3)$ and diacylglycerol (DG). Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of ${\alpha}-$ and ${\beta}-tubulin$ heterodimers in all eukaryotic cells. In humans, six ${\beta}-tubulin$ isotypes have been identified which display a distinct pattern of tissue expression. Previously we found that $PLC-{\gamma}\;1$ and one of four ${\beta}-tubulin$ isotypes including ${\beta}1$, ${\beta}2$, ${\beta}3$ and ${\beta}6$, colocalized in COS-7 cells and cotranslocated to the plasma membrane to activate $PLC-{\gamma}\;1$ upon agonist stimulation. In the present study, we demonstrate that the remaining two, tubulin ${\beta}4$ and ${\beta}5$, also showed a potential to activate $PLC-{\gamma}\;1$. The phosphatidylinositol 4,5-bisphosphate $(PIP_2)$ hydrolyzing activity of $PLC-{\gamma}\;1$ was substantially increased in the presence of purified ${\beta}4$ and ${\beta}5$ tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that tubulin ${\beta}4$ and ${\beta}5$ also activate $PLC-{\gamma}\;1$. Taken together, our results suggest that all the ${\beta}-tubulin$ isotype activates $PLC-{\gamma}\;1$ activity to regulate cellular signaling.

Characterization of Cysteine Residues in Cabbage Phospholipase D by Sulfhydryl Group Modifying Chemicals (설프히드릴 변형 화합물질들에 의한 양배추 포스포리파제 D의 시스테인 잔기의 특성)

  • Go, Eun-Hui
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.362-368
    • /
    • 2006
  • SH group modifying chemicals were used to characterize the eight cysteine residues of cabbage PLD. 5,5-dithiobis(2-nitrobenzoate)(DTNB) was used to titrate the SH group of cysteine residues . Based on the optical density at 412nm due to the reduced DTNB, 4 SH groups are found to be present in a native PLD while 8 SH groups in the denatured PLD whose tertiary structure was perturbed by 8M urea. The results imply that among the 8 cysteine residues of PLD, the half(4) are exposed on the surface whereas the other half are present at the interior of the enzyme tertiary structure. The PLD was inactivated by SH modifying reagents such as p-chloromercuribenzoate(PCMB), iodoacetate, iodoacetamide, and N-ethylmaleimide. At the addition of dithiothreitol(DTT) only the PCMB inhibited PLD activity was recovered reversibly. The micro-environment of the exposed SH group of cysteine residues was examined with various disulfide compounds with different functional groups and we found that anionic or neutral disulfides appear to be more effective than the positively charged cystamine for inactivating the PLD activity. The effect of redox state of cysteine residues on the PLD activity was further explored with H2O2. The oxidation of SH groups by H2O2 inhibited the PLD activity more than 70%, which was mostly recovered by DTT. From these results, we could confirm chemically that all the cysteine residues of PLD are present as in their reduced SH forms and the 4 SH groups exposed on the surface of the enzyme may play important roles in the regulation of PLD activity.

Production of Biodiesel from Fleshing Scrap Using Immobilized Lipase-catalyst (Lipase-catalyst를 이용한 프레싱 스크랩의 바이오디젤 제조에 관한 연구)

  • Shin, Soo-Beom;Min, Byung-Wook;Yang, Seung-Hun;Park, Min-Seok;Kim, Hae-Sung;Kim, Baik-Ho;Baik, Doo-Hyun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.177-182
    • /
    • 2008
  • This study was carried out to investigate the reaction of lipase-catalyst transesterification using animal fat recovered from fleshing scrap generated during leather making process. Transesterification reaction between fat and primary or secondary alcohol was carried out under the condition of immobilized enzyme catalyst. The conversion rate was the highest when 1.5 mole of methanol was injected by 4 times. As for lipase, Candida antarctica showed the highest conversion rate of 82.2% among the 4 different lipases. It was found that water contained in the fat causes lower conversion rate. The condition of 1.2wt. % of water in the fat decreased the conversion rate by 40%. It was considered that the resulted reactant, fatty acid ester could be used as raw material for biodiesel with the characteristics of not generating SOx and diminishing smoke.

Sequential Changes of Pericarp Ultrastructure in Citrus reticulata Hesperidium (Citrus reticulata 감과 과피 내 미세구조 변화)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.79-92
    • /
    • 2003
  • Ultrastructural changes of the pericarp in Citrus reticulata has been investigated during hesperidium abscission. The pericarp was composed of compactly arranged parenchyma cell layers during early stages of fruit development. The outermost exocarp was green and active in photosynthesis. However, cells in the exocarp soon changed into collenchyma cells by developing unevenly thickened walls within a short time frame. As the fruit approached maturation, the chlorophyll gradually disappeared and chloroplasts were transformed into carotenoid-rich chromoplasts. In the mature fruit the exocarp consisted of large, lobed collenchyma cells with primary pit fields and numerous plasmodesmata. The immature mesocarp was a relatively hard and thick layer, located directly under the exocarp. With development, the deeper layers of the exocarp merged into the white, spongy mesocarp. Before separation of the hesperidium from the plant, some unusual features were detected in the plasma membrane of the exocarp cells. The number of small vacuoles and dark, irregular osmiophilic lipid bodies also increased enormously in the exocarp collenchyma after the abscission. They occurred between the plasma membrane and the wall, and invaginated pockets of the plasma membrane containing double-membraned vesicles were also frequently noticed. The lipid bodies in the cytoplasm were often associated with other organelles, especially with plastids and mitochondria. The plastids, which were irregular or amoeboid in shape, contained numerous large lipid droplets, and occasional clusters of phytoferritin, as well as few loosely -oriented peripheral lamellae. Myelin-like configurations of membrane were frequently observed in the vacuoles, as was the association of lipid bodies with the vacuolar membrane. Most vacuoles had an irregular outline, and lipid bodies were often connected to the tonoplast of the vacuoles. The structural changes underlying developmental, particularly to senescence, processes in various hesperidium will be reported in the separate paper.

Effects of Temperature on Diacylglycerol Production by Enzymatic Soli-Phase Glycerolysis of Hydrogenated Beef Tallow (온도조절이 고상계에 경화우지로부터 디글리세리드의 효소적생산에 미치는 영향)

  • Kang, Sung-Tae;Yamane, Tsuneo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.567-572
    • /
    • 1994
  • Diglyceride was prepared by reaction of hydrogenated beef tallow and glycerol (GL) in the presence of a Pseudomonas lipase. Both substrates were mixed at the ratio of GL/Triglyceride of 0.5 which is the stoichiometric molar ratio for the complete conversion of triglyceride (TG) to diglyceride (DG). DG can be obtained by solid phase-glycerolysis of hydrogenated beef tallow without use of organic solvents or emulsifiers by careful control of reaction temperature. Optimized reaction temperature condition was as follows: An initial incubation at$60^{\circ}C$ for 2h followed by the first temperature shift down to $55^{\circ}C$ for 4h, and then the second shift down to $50^{\circ}C$ for up to 3 days. There was a large decrease in the content of TG during the first $60^{\circ}C$ incubation for 2h. Even a prolonged incubation at $60^{\circ}C$ could not make a change of the composition of the reaction mixture at liquid state. By controlling the temperature lower than $60^{\circ}C$, reaction mixtures were solidified. The reaction temperature at $50^{\circ}C$ below the melting temperature of hydrogenaed beef tallow gave an 71% optimum yield of DG after 72h enzymatic glycerolysis and about 73% of total DG was 1,3-DG.

  • PDF

Study on the soluble exoression of recombinant human eoidermal growth factor using various fusion oartners in Escherichia coli (재조합 대장균에서 다양한 융합 파트너를 이용한 인간 상피세포성장인자의 발현 연구)

  • Kim, Byung-Lip;Baek, Jung-Eun;Kim, Chun-Sug;Lee, Hyeok-Weon;Ahn, Jung-Oh;Lee, Hong-Weon;Jung, Joon-Ki;Lee, Eun-Gyo;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.205-212
    • /
    • 2008
  • The efficient soluble expression of human epidermal growth factor (hEGF) was achieved by using functional fusion partners in cytoplasm and periplasm of Escherichia coli (E. coli). hEGF was over-expressed in inactive inclusion body form in cytoplasm of E. coli due to improper disulfide bond formation and hydrophobic interaction, yielding about 5.9 mg/L in flask culture. Six functional fusion partners were introduced by linking to N-terminal part of hEGF gene for the high-level expression of soluble and active hEGF in cytoplasm and peri plasm region. Three fusion partners for cytoplasmic expression such as acidic tail of synuclein (ATS), thioredoxin (Trx) and lipase, and three fusion partners for periplasmic expression such as periplasmic cystein oxidoreductases (DsbA and DsbC) and maltose binding protein (MBP) were investigated. hEGF fused with ATS and DsbA showed over 90% of solubility in cytoplasm and periplasm, respectively. Especially DsbA was found to be an efficient fusion partner for soluble and high-level expression of hEGF, yielding about 18.1 mg/L and three-fold higher level compared to that of insoluble non-fusion hEGF in cytoplasm. Thus, heterologous proteins containing complex disulfide bond and many hydrophobic amino acids can effectively be produced as an active form in E. coli by introducing a suitable peptide or protein.

Alteration of Phospholipase D Activity in the Rat Tissues by Irradiation (방사선 조사에 의한 쥐 조직의 포스포리파제 D의 활성 변화)

  • Choi Myung Sun;Cho Yang Ja;Choi Myung-Un
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1997
  • Purpose : Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer Process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. Materials and Methods : The reaction mixture for the PLD assay contained $0.1\;\muCi\;1,2-di[1-^{14}C]palmitoyl$ phosphatidylcholine 0.5mM phosphatidylcholine, 5mM sodium oleate, $0.2\%$ taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM $CaCl_2$, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cmx loom and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Results : Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward $\gamma-rar$ with more than two times amplification in their activities In contrast, the PLD activity of bone marrow appears to be reduced to nearly $30\%$. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. Conclusion : The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation s1ron91y indicates that the PLD is closely related to the physiological function of these organs, Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell Proliferation to cell death on these organs.

  • PDF