• Title/Summary/Keyword: 리튬2차 전지

Search Result 148, Processing Time 0.026 seconds

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Electrochemical Characteristics and Physical Properties of Poly(ethylene oxide)-Li based Polymer Electrolyte (Poly(ethylene oxide)-Li계 고분자 전해질의 전기화학적 특성 및 물리적 성질)

  • Kim, Hyung-Sun;Cho, Byung-Won;Yun, Kyung-Suk;Chun, Hai-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.433-442
    • /
    • 1996
  • Electrochemical characteristics and physical properties of polymer electrolyte which immobilized lithium salts such as $LiClO_4$ and $LiCF_3SO_3$ and plasticizers such as ethylene carbonate(EC) and propylene carbonate(PC) in high molecular weight poly(ethylene oxide)[PEO] polymer was investigated. PEO-Li based polymer electrolyte with plasticizers showed ionic conductivity of $10^{-4}S/cm$ at room temperature and high electrochemical stability up to 4.5 V(vs. $Li^+/Li$), so it can be applied to lithium secondary battery. The crystallinity of PEO decreased with the addition of lithium salts and plasticizers, especially $LiClO_4$ and PC showed more effective than and $LiCF_3SO_3$ and EC. Glass transition temperature($T_g$) of polymer electrolyte increased with increasing lithium salt concentration whereas melting temperature ($T_m$) decreased. Polymer electrolyte with plasticizers crystallized at $6^{\circ}C$.

  • PDF

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.

Charge/discharge characteristics by heat treatment condition of cathode active material LiMn$_2$O$_4$ for Li rechargeable batteries (리튬 2차 전지용 정극 활물질 LiMn$_2$O$_4$의 열처리 조건에 따른 충방전 특성)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.369-372
    • /
    • 1996
  • We prepared LiMn$_2$O$_4$ by reacting stoichiometric mixture of LiOH.$H_2O$ and MnO$_2$ (mole ratio 1 : 1) and heating at 80$0^{\circ}C$ for 24h, 36h, 48h, 60h and 70h. We obtained through X-ray diffraction that lattice parameter varied as function of heat treatment time. heated cathode active materials at 80$0^{\circ}C$ for 36h, (111)/(311) peak ratio was 0.37. It expected good charge/discharge characteristics. When (111)/(311) peak ratio was 0.37, it will be that crystal structure is farmed very well. In the result of charge/discharge test When heated at 80$0^{\circ}C$ for 36h, charge/discharge characteristic of LiMn$_2$O$_4$is the most property. It agree with our expectation.

  • PDF

High Performance Separator at High-Temperature for Lithium-ion Batteries (고온 싸이클 성능이 우수한 리튬 이차전지 분리막)

  • Yoo, Seungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.789-793
    • /
    • 2021
  • A lithium secondary battery is the most promising candidate for future energy storage devices. On the other hand, the battery capacity decreases gradually due to the small amount of water and decomposition of the salts during the charging and discharging process, which deteriorates at high temperatures. Many researchers focused on increasing the cycling performance, but there have been few studies on the fundamental problem that removes water and HF molecules. In this study, silane molecules that are capable of absorbing water and HF molecules are introduced to the separator. Firstly, silica-coated amino-silane (APTES, 3-aminopropyltriethoxysilane) was synthesized, then the silica reacted with epoxy-silane, GPTMS ((3-glycidyloxypropyl)trimethoxysilane). A ceramic-coated separator was fabricated using the silane-coated silica, which is coated on porous polyethylene substrates. FT-IR spectroscopy and TEM analysis were performed to examine the chemical composition and the shape of the silane-coated silica. SEM was performed to confirm the ceramic layers. LMO half cells were fabricated to evaluate the cycling performance at 60 ℃. The cells equipped with a GPTMS-silica separator showed stable cycling performance, suggesting that it would be a solution for improving the cycling performance of the Li-ion batteries at high temperatures.

Electrochemical Properties of Polypyrrole Cathode for Lithium Secondary Batteries (리튬 2차 전지 정극으로 이용한 Polypyrrole의 전기화학적 특성)

  • 김현철;김종욱;구할본;문성인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.76-79
    • /
    • 1996
  • Polypyrrole films were electrochemically synthesized under a constant current condition ranging from 50 ${\mu}$A/$\textrm{cm}^2$ to 2 mA/$\textrm{cm}^2$ with resultant high electrical conductivity about 100 S/cm. Specific energy of 70 Wh/kg and Ah efficiency of 97% were achieved during the cycling using liquid electrolyte system. On the other hand, consequences of the cycling were 51 Wh/kg and 95% using PEO$\sub$8/LiClO$_4$PC$\sub$5/EC$\sub$5/ solid electrolyte system. Polypyrrole film can be cycled stable and Ah efficiency is excellent, so it can be applicable to the cathode of Lithium secondary batteries.

  • PDF

펄스 레이저 증착법(PLD)으로 제조된 $LiCoO_2$ 박막의 특성

  • Park, Hyeong-Seok;Choe, Gyu-Ha;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.287-287
    • /
    • 2010
  • 휴대용 기기의 사용이 증가하면서 배터리의 고용량화와 소형화가 요구되고 있다. 특히 내시경 캡슐과 같은 의료용 센서 기기에서는 소형화가 매우 중요하며 인체에 해로운 액체전해질이 들어가지 않는 것이 바람직하다. 최근 무선센서, RFID 태그, 스마트 카드 등을 위하여 고체전해질을 사용하는 박막 마이크로 배터리가 개발되고 있으나, 에너지 저장용량이 작아 응용분야가 제한적이다. Si wafer 위에 형성된 고단차의 3차원 구조 위에 박막 배터리를 형성한다면 표면적 증가에 의해 에너지 저장용량 역시 크게 증가할 것이며, Si 기반의 반도체, 디스플레이, 태양전지 등과 쉽게 집적이 가능할 것이다. 본 연구에서는 펄스 레이저 증착법(Pulsed Laser Deposition)으로 리튬 배터리의 cathode 물질인 $LiCoO_2$를 박막으로 제조하고 그 특성을 연구하였다. 펄스 레이저 증착법은 저온 증착이 가능하고 타겟 물질과 같은 조성의 박막을 증착하는 것이 용이한 장점이 있다. Pt, TiN 등의 기판 위에 $LiCoO_2$ 박막을 증착하고 증착 온도와 산소($O_2$) 분압이 박막의 조성, 미세구조, 결정성, 그리고 전하저장용량에 미치는 영향을 고찰하였다.

  • PDF

리튬 2차 전지의 1차원 열적 특성을 고려한 지능형 용량예측

  • Lee, Jeong-Su;Ho, Bin;Kim, Gwang-Seon;Im, Geun-Uk;Jo, Jang-Gun;Jo, Hyeon-Chan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.244-249
    • /
    • 2007
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as cycle life, charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a mathematical model of battery. In this one-dimensional model, Seven governing equations are made to solve seven variables $c,\;c_s,\;{\Phi}_1,\;{\Phi}_2,\;i_2,\;j\;and\;T$. The mathematical model parameters used in this model have been adjusted according to the experimental data measured in our lab. The connecting research of this study is to get an accurate estimate of the capacity of battery through comparison of results from simulation and fuzzy logic system. So the result data from this study is reorganized to fit the fuzzy logic algorithm.

  • PDF

The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries (리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성)

  • 김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

Charge/discharge Properties of Flyash as a function of Electrolyte for Lithium Rechargeable Battery (전해질 종류에 따른 Flyash의 리튬 2차전지의 충방전 특성)

  • 송희웅;김종욱;이경섭;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.362-365
    • /
    • 1999
  • The electrochemical properties of flyash obtained from combustion of fuel in fossil power plants and their performance as anode material of secondary battery have been investigated Various flysh pellets molded at various molding pressure have been used as anode lithium secondary battery. The best Performance was achieved when flyash pellet molded at pressure of 400kgf/$\textrm{cm}^2$ is utilized, that is, charge capacity of 300kgf/$\textrm{cm}^2$ and Coulombic efficiency of larger than 95% have been achieved. In addition, this battery exhibited good cycling performance. Considering these results, we predicted that utilization of the flyash as anode material and polyaniline conducting polymer as cathode material in a secondary will show capacity of 300mAh/g and Coulombic efficiency of higher than 95%.

  • PDF