• Title/Summary/Keyword: 리튬폴리머

Search Result 148, Processing Time 0.031 seconds

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.

Seismic Performance Evaluation of the Li-Polymer Battery Rack System for Nuclear Power Plant (원자력발전소용 리튬폴리머 배터리 랙 시스템의 내진성능평가)

  • Kim, Si-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2019
  • After the Fukushima nuclear accident, a new power supply using a lithium polymer battery has been proposed the first time in the world as the safety of the emergency battery facility has been required. It is required to have the safety of the rack system in which the battery device is installed in order to apply the proposed technology to the field. Therefore, the purpose of this study is to evaluate the seismic performance of string and rack frame for lithium-polymer battery devices developed for the first time in the world to satisfy 72 hours capacity. (1) The natural frequency of the unit rack system was 9 Hz, and the natural frequency before and after the earthquake load did not change. This means that the connection between members is secured against the design earthquake load. (2) he vibration reduction effect by string design was about 20%. (3) As a result of the seismic performance test under OBE and SSE conditions, the rack frame system was confirmed to be safe. Therefore, the proposed rack system can be applied to the nuclear power plant because the rack system has been verified structural safety to the required seismic forces.

Study on Production of Power Monitoring Unit for Electric Propulsion UAV (전기동력 무인항공기용 PMU의 개선 및 제작에 대한 연구)

  • Kang, Jin-Myeong;Jeong, Jin-Seok;Kang, Beom-Soo;Kim, Jang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • This paper describes the design and implementation of previously developed PMU (Power Monitoring Unit) for LiPB (Lithium-ion Polymer Battery) that is electric propulsion used as unmanned aerial vehicle's power source. Improved PMU provides stable voltage and current to various sensors and elctric motors necessary during flight. Voltage and current monitoring function that is measured by improved PMU more precisely be enhanced and the monitoring channel and temperature sensor is added. To verify the improved performance of the equipment, it is integrated to electric propulsion system of unmanned aerial vehicle. PMU is calibrated through the ground test. And PMU's performance is checked through the flight test.

Development of High Performance Battery for Navigation Aid's Power (항로표지(등부표) 전원공급용 고성능 축전지 개발)

  • Yoon, Seok-Jun;Cho, Myung-Hun;Lee, Dae-Pyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.435-438
    • /
    • 2009
  • A navigation aid buoy is a kind of safety facility for maritime navigation with a purpose of leading the vessels for navigating, docking and sail off. An advanced rechargeable battery is required for stable power supply for navigation aid buoy as the high magnitude LED lamps, real time location/control for navigation aids and e-Navigation support systems with maritime climate observation equipments have recently been deployed. This study is focused on the lithium battery, especially lithium polymer battery which is believed to be safer than the other types of batteries. The lithium polymer battery reviewed in this study is designed with $LiFePO_4$-based cathode, which has superior safety features to the oxide-based cathodes. Besides, a 3.6kWh battery pack has been built with the above-mentioned unit cells for the purpose of comparative research with lead acid battery system.

  • PDF

Separators far Li-Ion Secondary Batteries (리튬이온 2차전지용 분리막)

  • Nam Sang Yong;Lee Young Moo;Lee Chang Hyun;Park Ho Bum;Rhim Ji Won;Ha Seong Yong;Kang Jong Seok
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • The polymeric membrane, a component of battery devices such as Li-ion battery (LIB) and Li-polymer battery (LPB), is a typical material in which the carrier mobility dominates the battery performance. In this paper, the state-of-the-art of membranes for secondary battery is described in terms of membrane properties. Several prerequisites, which are related to stability of battery devices, are discussed to design and prepare suitable polymeric membranes. In addition, physical requirements of membranes and their measurement methods are described to develop applicable polymeric membranes in membrane preparation processes.