• Title/Summary/Keyword: 리브드 튜브

Search Result 2, Processing Time 0.016 seconds

A Study on Numerical Analysis for Flow Characteristics in Ribbed Tube (열교환기내 리브드 튜브의 유동 특성에 관한 수치해석적 연구)

  • Jeon, Jeong-Do;Jeon, Eon-Chan;Jeung, Hui-Gyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.115-120
    • /
    • 2011
  • A ribbed tube consumes more power to transport the fluid by comparing with flat one. After the tangential velocity component occurs, its contact area with the ribbed tube becomes large and it enables the effective energy transportation. The flow characteristics vary according to the geometry of tube rib. This study aims to investigate the flow characteristics of fluids working at Reynolds numbers of 20,000, 40,000, 60,000 and 80,000 with the air at $15^{\circ}C$ in the ribbed test tube high 1mm and wide 8.48mm. As the flow characteristics are included with the states of fully developed hydrodynamical region, axial velocity vector distribution and non-dimensional velocity distribution, they are shown with the physical validity.

A Study on Numerical Analysis for Heat Transfer and Flow Characteristics in a Ribbed Tube (열교환기 내 리브드 튜브의 열전달 및 유체유동에 관한 수치 해석적 연구)

  • Jeon, Jeong-Do;Jeon, Eon-Chan;Jeung, Hui-Gyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.134-139
    • /
    • 2011
  • This study was conducted on the characteristics of fluid flow and heat transfer in the ribbed tube used for a steam power plant. It was assumed that the air is incompressible and therefore, its density is not variable according to temperature. In addition, the gravity was ignored. A commercial code of computational fluid dynamics was used and standard k-$\epsilon$ model was used together with the energy equation included to calculate heat transfer. As Reynolds No. was low at the velocity distribution in the axial direction, the air reached hydro-dynamically fully developed region shortly but high Reynolds No. yielded late full hydro-dynamic development. The velocity distribution and non-dimensional temperature distribution were all physically reasonable and thus had a good agreement with the experimental result.