• 제목/요약/키워드: 리뷰 논문

검색결과 478건 처리시간 0.035초

제품 리뷰문에서의 광고성 문구 분류 연구 (Classification of Advertising Spam Reviews)

  • 박인숙;강한훈;유성준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.186-190
    • /
    • 2010
  • 본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.

  • PDF

KoGPT2를 이용한 쇼핑몰 리뷰 생성기 (Shopping Mall Review Generator usin KoGPT2)

  • 박규현;권희연
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.31-33
    • /
    • 2022
  • 쇼핑몰 리뷰 생성기는 사용자로 하여금 사용자를 대신해서 리뷰를 생성할 수 있는 기술이고, 옷 상태, 배송 상태, 사이즈와 관련된 세 가지의 카테고리를 이용하여 부분마다 점수를 부여하여 점수에 맞는 리뷰를 생성할 수 있도록 하는 기술이다. 해당 리뷰 생성기는 점수마다 생성되는 리뷰가 달라지기 때문에 다양한 리뷰 생성을 원하는 웹, 앱 쇼핑몰 사이트에서 적용이 가능한 기술이다. 본 논문에서는 KoGPT2를 이용한 리뷰 생성과 카테고리와 점수에 따른 다르게 생성되는 리뷰의 방식을 제안한다. 그리고 두 방식을 결합한 리뷰 생성의 방식을 제안한다. 제안하는 방식들은 카테고리고리 마다 학습하는 모델을 다르게 적용하고 있다.

  • PDF

국내 쇼핑 사이트 적용을 위한 리뷰 스팸 탐지 방법의 성능 평가 (Performance Evaluation of Review Spam Detection for a Domestic Shopping Site Application)

  • 박지현;김종권
    • 정보과학회 논문지
    • /
    • 제44권4호
    • /
    • pp.339-343
    • /
    • 2017
  • 상품 또는 상점에 대해 거짓된 후기를 남기는 악의적인 사용자가 증가함에 따라 사용자에게 신뢰성 있는 정보를 제공하는 데 어려움을 겪고 있다. 거짓된 후기는 리뷰 스팸이라고 불리는데, 제품을 홍보하거나, 평판을 훼손하기 위해 작성된다. 이는 제품의 판매량에 직접 영향을 미치기 때문에 이러한 리뷰 스팸을 탐지할 필요가 있다. 국내 쇼핑 사이트에서도 리뷰 스팸은 흔히 접할 수 있으나, 기존 연구에서 제안된 방법은 모두 외국 사이트에서만 평가되었다. 따라서, 본 논문에서는 리뷰 스팸을 탐지하는 기존 방법의 소개와 더불어 네이버 쇼핑의 리뷰 특성을 파악하고, 리뷰 스팸을 탐지하는 여러 가지 방법을 네이버 쇼핑에 적용하여 성능을 평가하였다.

새로운 피어리뷰(Peer Review)로써의 오픈피어리뷰(Open Peer Review)에 대한 고찰 (A study of Open Peer Review as new Peer Review)

  • 김하나;이지현
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2014년도 제21회 학술대회 논문집
    • /
    • pp.73-78
    • /
    • 2014
  • 피어리뷰(Peer Review)는 17세기 학술지가 만들어진 이래 오늘날까지 가장 널리 사용되는 논문의 질적인 수준과 학술지 게재 여부를 판단하는 전통적인 평가도구이다. 그러나 피어리뷰의 과정에서 발생되는 공정성 저해와 학술출판 분야에서 오픈 액세스 (OA, Open Access) 저널이 계속적으로 증가하는 디지털 미디어 시대에서 소수의 전문가가 검증하는 피어리뷰 시스템에 관한 불만들이 제기되면서 현 피어리뷰 시스템의 새로운 대안으로 오픈 피어리뷰(Open Peer Review)가 제시되기도 하였다. 이에 본 연구에서는 피어리뷰의 이론적 배경을 살펴보고 이를 토대로 새로운 대안으로 떠오르고 있는 오픈피어리뷰의 평가도구로써의 활용가능성에 대하여 살펴보고자 한다.

  • PDF

Artificial Neural Network를 이용한 논문 저자 식별 (Author Identification Using Artificial Neural Network)

  • 정지수;윤지원
    • 정보보호학회논문지
    • /
    • 제26권5호
    • /
    • pp.1191-1199
    • /
    • 2016
  • 논문 심사는 공정성을 확보하기 위하여 누가, 누구의 논문을 리뷰하는지 알 수 없도록 블라인드 리뷰를 시행한다. 하지만 일반적으로 논문은 저자의 연구 분야뿐만 아니라 저자가 자주 사용하는 단어, 어휘 등으로 이루어지기 때문에 저자의 정보를 숨기더라도 논문의 내용을 통해 저자를 파악할 수 있다. 본 논문에서는 저자 20명의 논문 315편을 수집하고 텍스트를 추출하여 데이터 정제 작업을 수행하였다. 그리고 정제 작업을 통해 추출된 단어를 추출해내어 인공신경망(artificial neural network)을 통한 분류를 진행함으로써 블라인드 리뷰(blind review)의 우회 가능성을 보였다. 실험을 통해 기존 블라인드 리뷰 시스템의 한계점을 보임으로써 향후 더욱 안전한 블라인드 리뷰 시스템의 필요성을 강조하였다.

BERT+ 알고리즘 기반 약물 리뷰를 활용한 약물 이상 반응 탐지 (Detection of Adverse Drug Reactions Using Drug Reviews with BERT+ Algorithm)

  • 허은영;정현정;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.465-472
    • /
    • 2021
  • 본 논문에서는 약물의 시판 후 이상 반응을 모니터링하기 위해 약물 리뷰 데이터로부터 약물 이상 반응을 탐지할 수 있는 방법을 제시하였다. 부정적인 약물 리뷰는 주로 약물 이상 반응을 언급하고 있다는 점을 고려하여 약물 리뷰들을 감성 분석하여 부정 리뷰를 추출하고, 부정 리뷰에 사전 기반 추출과 개체명 인식 기법을 적용하여 약물 이상 반응을 탐지하였다. 제안하는 BERT+ 알고리즘으로 부정 리뷰를 판별한 다음, MedDRA 표준 의학 용어 사전을 활용해 이상 반응 단어를 찾고, 개체명 인식 기법을 사용하여 구로 표현된 이상 반응 표현을 탐지하였다. 실험을 위해 비스테로이드성 소염진통제 세 종류의 약물 리뷰를 약물 리뷰 사이트로부터 수집하여 테스트하였으며, 실험 결과는 약물 리뷰를 통한 약물 이상 반응 탐지가 현재의 약물 감시 체계의 한계점을 보완할 수 있음을 보여준다.

전자 상거래 사이트의 가짜 리뷰 판별 기법 조사 (Survey on Fake Review Detection of E-commerce Sites)

  • 지쳉장;장진홍;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.79-81
    • /
    • 2014
  • 전자 상거래 리뷰 정보에 대한 소비자들의 의존도가 증가하고 있다. 제품 리뷰는 잠재적인 고객의 구매 결정에 있어 중요한 결정 요소이다. 제품 리뷰는 또한 상품 제조사들이 자신들의 제품에 대한 문제점을 발견하고 자신들의 경쟁자들에 대한 경쟁 정보를 수집할 수 있도록 해준다. 불행히도 많은 온라인 제품 정보들이 그 제품에 대한 진짜 고객들에 의해 만들어지지 않은 것이라는 것은 잘 알려진 사실이다. 리뷰를 쓰는 사람들은, 특정 제품의 평판을 떨어뜨리기 위해 가짜로 부정적인 리뷰를 쓰거나, 특정 제품에 대해 부당하게 긍정적인 리뷰를 써서 그 제품을 홍보하기도 한다. 이러한 리뷰들을 가짜 리뷰라고 한다. 가짜 리뷰 판별 기법은 가짜 리뷰를 판별하고 삭제하여 진실한 리뷰들만 독자에게 제공하기 위한 기법이다. 현재까지 이 문제에 대한 연구는 많이 발표되지 않았다. 본 논문에서, 우리는 관련 연구들을 조사하고 가짜 리뷰 판별 기법들에 대해 간단히 조망해 보고자 한다. 웹 스팸 및 이메일 스팸과 같은 가짜 리뷰 판별과 관련된 연구들을 소개한다. 그리고, 가짜 리뷰들을 판별하기 위한 방법들을 소개하고 요약한다. 마지막으로 가짜 리뷰 판별에 대한 연구 추세들로 결론을 맺는다.

  • PDF

음식메뉴 개체명 인식을 위한 음식메뉴 사전 자동 구축 (Automatic Construction of Restaurant Menu Dictionary)

  • 구영현;유성준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.102-106
    • /
    • 2013
  • 레스토랑 리뷰 분석을 위해서는 음식메뉴 개체명 인식이 매우 중요하다. 그러나 현재의 개체명 사전을 이용하여 리뷰 분석을 할 경우 구체적이고 복잡한 음식메뉴명을 표현하는데 충분하지 않으며 지속적인 업데이트가 힘들어 새로운 트렌드의 음식 메뉴명 등이 반영되지 않는 문제가 있다. 본 논문에서는 레스토랑 전문 사이트와 레시피 제공 사이트에서 각 레스토랑의 메뉴 정보와 음식명 등을 래퍼기반 웹 크롤러로 수집하였다. 그런 다음 빈도수가 낮은 음식메뉴와 레스토랑 온라인 리뷰에서 쓰이지 않는 음식메뉴를 제거하여 레스토랑 음식 메뉴 사전을 자동으로 구축하였다. 그리고 레스토랑 온라인 리뷰 문서를 이용해 음식 메뉴 사전의 엔티티들이 어느 유형의 레스토랑 리뷰에서 발견되는지를 찾아 빈도수를 구하고 분류 정보에 따른 비율을 사전에 추가하였다. 이 정보를 이용해 여러 분류 유형에 해당되는 음식메뉴를 구분할 수 있다. 실험 결과 한국관광공사 외국어 용례사전의 음식 메뉴명은 1,104개의 메뉴가 실제 레스토랑 리뷰에서 쓰인데 비해 본 논문에서 구축한 사전은 1,602개의 메뉴가 실제 레스토랑 리뷰에서 쓰여 498개의 어휘가 더 구성되어 있는 것을 확인 할 수 있었다. 이와 아울러, 자동으로 수집한 메뉴의 정확도와 재현율을 분석한다. 실험 결과 정확률은 96.2였고 재현율은 78.4, F-Score는 86.4였다.

  • PDF

상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법 (A Sentiment Classification Method Using Context Information in Product Review Summarization)

  • 양정연;명재석;이상구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.254-262
    • /
    • 2009
  • e비즈니스가 활발히 이루어지면서 소비자들은 온라인 쇼핑몰올 통해 수많은 상품을 접할 수 있게 되었고, 상품구매 시 다른 사람들의 리뷰를 참고하게 되었다. 하지만, 리뷰의 수도 많아짐에 따라 소비자가 모든 리뷰들을 살펴보기가 힘들다는 문제점이 대두되었으며 이를 해결하기 위해서 리뷰의 상품에 대한 평가를 요약하고 성향을 파악하는 오피니언 마이닝 연구가 나타나게 되었다. 본 논문에서는 상품리뷰를 대상으로 오피니언 마이닝을 수행하는 경우 어휘의 의견 성향을 파악할 때, 문맥정보를 활용하여 기존의 의견분류방법 보다 좀 더 정확한 의견 판단이 가능한 방법에 대해 다루고 있다. 이를 위해, 어휘가 사용될 때의 문맥정보를 정의하고 이를 의견분류에 적용하는 방법을 제안하였으며, 실험을 통하여 기존 연구 보다 상황별 알맞은 의견분류가 가능함을 보였다. 또한 수작업으로 말뭉치의 핵심 어휘들을 정의했던 기존 연구들에서의 방식에서 벗어나, 리뷰본문과 리뷰점수를 활용하여 자동으로 상황에 맞는 말뭉치를 구축하는 방법도 제안하였다. 이를 통해 상품리뷰에 나타난 어휘들의 문맥에 맞는 의미 성향을 정확하고 쉽게 판별해 낼 수 있게 되었다.

리뷰분석을 통한 온라인교육자 신뢰도 파악 자동화 시스템 설계 (Designing an automated system to grasp the reliability of online educators through review analysis)

  • 이기훈;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.596-598
    • /
    • 2018
  • 본 논문은 온라인 교육매칭 플랫폼의 교육자에 대한 신뢰도 파악을 위한 리뷰분석 자동화 시스템을 설계한 논문이다. 웹 크롤링을 통해 비정형 데이터인 교육자에 대한 리뷰를 수집 및 파싱을 통해 데이터 베이스화 한다. 수집한 리뷰 데이터와 SO-PMI를 이용해 온라인 교육자 신뢰도 파악을 위한 맞춤형 감성사전을 구축하고자 한다. 구축한 감성사전을 이용해 리뷰를 수치화해 교육자와 피교육자 매칭 시신뢰성 향상에 도움을 주고자 한다.