• Title/Summary/Keyword: 리뷰평점

Search Result 62, Processing Time 0.02 seconds

Multicriteria Movie Recommendation Model Combining Aspect-based Sentiment Classification Using BERT

  • Lee, Yurin;Ahn, Hyunchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2022
  • In this paper, we propose a movie recommendation model that uses the users' ratings as well as their reviews. To understand the user's preference from multicriteria perspectives, the proposed model is designed to apply attribute-based sentiment analysis to the reviews. For doing this, it divides the reviews left by customers into multicriteria components according to its implicit attributes, and applies BERT-based sentiment analysis to each of them. After that, our model selectively combines the attributes that each user considers important to CF to generate recommendation results. To validate usefulness of the proposed model, we applied it to the real-world movie recommendation case. Experimental results showed that the accuracy of the proposed model was improved compared to the traditional CF. This study has academic and practical significance since it presents a new approach to select and use models in consideration of individual characteristics, and to derive various attributes from a review instead of evaluating each of them.

Analysis of service strategies through changes in Messenger application reviews during the pandemic: focusing on topic modeling (팬데믹 기간 Messenger 애플리케이션 리뷰 변화를 통한 서비스 전략 분석 : 토픽 모델링을 중심으로)

  • YuNa Lee;Mijin Noh;YangSok Kim;MuMoungCho Han
    • Smart Media Journal
    • /
    • v.12 no.6
    • /
    • pp.15-26
    • /
    • 2023
  • As face-to-face communication has become difficult due to the COVID-19 pandemic, studies have been conducted to understand the impact of non-face-to-face communication, but there is a lack of research that examines this through messenger application reviews. This study aims to identify the impact of the pandemic through Latent Dirichlet Allocation (LDA) topic modeling by collecting review data of 메신저 applications in the Google Play Store and suggest service strategies accordingly. The study categorized the data based on when the pandemic started and the ratings given by users. The analysis showed that messenger is mainly used by middle-aged and older people, and that family communication increased after the pandemic. Users expressed frustration with the application's updates and found it difficult to adapt to the changes. This calls for a development approach that adjusts the frequency of updates and actively listens to user feedback. Also, providing an intuitive and simple user interface (UI) is expected to improve user satisfaction.

Analysis of Resident's Satisfaction and Its Determining Factors on Residential Environment: Using Zigbang's Apartment Review Bigdata and Deeplearning-based BERT Model (주거환경에 대한 거주민의 만족도와 영향요인 분석 - 직방 아파트 리뷰 빅데이터와 딥러닝 기반 BERT 모형을 활용하여 - )

  • Kweon, Junhyeon;Lee, Sugie
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.2
    • /
    • pp.47-61
    • /
    • 2023
  • Satisfaction on the residential environment is a major factor influencing the choice of residence and migration, and is directly related to the quality of life in the city. As online services of real estate increases, people's evaluation on the residential environment can be easily checked and it is possible to analyze their satisfaction and its determining factors based on their evaluation. This means that a larger amount of evaluation can be used more efficiently than previously used methods such as surveys. This study analyzed the residential environment reviews of about 30,000 apartment residents collected from 'Zigbang', an online real estate service in Seoul. The apartment review of Zigbang consists of an evaluation grade on a 5-point scale and the evaluation content directly described by the dweller. At first, this study labeled apartment reviews as positive and negative based on the scores of recommended reviews that include comprehensive evaluation about apartment. Next, to classify them automatically, developed a model by using Bidirectional Encoder Representations from Transformers(BERT), a deep learning-based natural language processing model. After that, by using SHapley Additive exPlanation(SHAP), extract word tokens that play an important role in the classification of reviews, to derive determining factors of the evaluation of the residential environment. Furthermore, by analyzing related keywords using Word2Vec, priority considerations for improving satisfaction on the residential environment were suggested. This study is meaningful that suggested a model that automatically classifies satisfaction on the residential environment into positive and negative by using apartment review big data and deep learning, which are qualitative evaluation data of residents, so that it's determining factors were derived. The result of analysis can be used as elementary data for improving the satisfaction on the residential environment, and can be used in the future evaluation of the residential environment near the apartment complex, and the design and evaluation of new complexes and infrastructure.

Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry (딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로)

  • Dongeon Kim;Dongsoo Jang;Jinzhe Yan;Jiaen Li
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.31-49
    • /
    • 2023
  • With the growth of the food-catering industry, consumer preferences and the number of dine-in restaurants are gradually increasing. Thus, personalized recommendation services are required to select a restaurant suitable for consumer preferences. Previous studies have used questionnaires and star-rating approaches, which do not effectively depict consumer preferences. Online reviews are the most essential sources of information in this regard. However, previous studies have aggregated online reviews into long documents, and traditional machine-learning methods have been applied to these to extract semantic representations; however, such approaches fail to consider the surrounding word or context. Therefore, this study proposes a novel review textual-based restaurant recommendation model (RT-RRM) that uses deep learning to effectively extract consumer preferences from online reviews. The proposed model concatenates consumer-restaurant interactions with the extracted high-level semantic representations and predicts consumer preferences accurately and effectively. Experiments on real-world datasets show that the proposed model exhibits excellent recommendation performance compared with several baseline models.

Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis (상품 리뷰 감성분석을 이용한 아이템 기반 협업 필터링 추천 기법)

  • Yun, So-Young;Yoon, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.970-977
    • /
    • 2020
  • The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.

Utilizing NLP-based Data Techniques from Customer Reviews: Deriving Insights and Strategies for Cushion Product Improvement (고객 리뷰를 통한 NLP 기반 데이터 기술 활용: 고객 인사이트 도출과 쿠션 제품 개선 방안 연구)

  • Sel-A Lim;Mi-yeon Cho;Eun-Bi Jo;Su-Han Yu
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • This study aims to provide insights for developing innovative products, based on reviews from females aged 30 to 70 who bought cosmetic cushions via TV home shopping. Analyzing 200,000 reviews with Selenium and NLP techniques, we found the main audience is in their 50s and 60s, prioritizing radiance, blemish and wrinkle coverage, and adherence. Notably, products with appealing designs were preferred, especially for gifting among relatives and friends. The proposed innovation is Korea's first AI-recommended cushion, utilizing NLP to match customer needs. Key ingredient recommendations include S.Acamella extract and AHA components, chosen for their perceived benefits and consumer preference. The research also highlights the importance of product aesthetics and gift potential, suggesting marketing strategies should emphasize these aspects to appeal to the target demographic. This approach aims to guide product development and marketing towards meeting consumer expectations in the cosmetic cushion industry, making products more personalized and gift-worthy.

금융상품 만족도에 영향을 미치는 요인 -온라인 금융상품 비교/추천 플랫폼을 중심으로-

  • Hwang, Chang-Hui
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2017.04a
    • /
    • pp.52-52
    • /
    • 2017
  • 글로벌 금융위기 이후 다양한 형태로 등장한 금융상품과 ICT의 결합은 그 동안 생각하지 못한 방식으로 전 세계에 다양한 수요를 충족시키면서 폭발적으로 성장했다. 하지만 IT강국이라고 자부하는 대한민국은 다양한 규제와 시스템의 복잡성 때문에 은행상품이 온라인에서 거래되는 것은 아직까지 익숙하지 않다. 다행히 이러한 규제가 조금씩 완화되어 가면서 2016년은 모바일 송금, 금융상품 추천 플랫폼 등 비 금융업체 주도의 금융시장 온라인화가 소극적으로 이루어지는 과도기로 볼 수 있다. 이러한 시점에서 기존 오프라인 채널이 아닌 온라인 채널을 통해 금융상품을 구매하거나 가입하는 고객의 만족요인에 대해 연구하는 것은 향후 폭발적으로 증가할 수요에 앞서 연구하고, 현상을 주도할 기업에서도 소비자의 만족요인을 미리 파악한다는 점에서 시기적으로 적절하다. 해당 연구는 신용대출, 정기예금, 전세대출, 주택담보대출, 정기적금, 그리고 P2P투자 상품 별 만족도에 영향을 미치는 요인과 영향력을 SERVPERF 모델을 이용하여 분석한 뒤, 회귀분석과 텍스트간의 공동 출현단어에 대해 파이선을 통해 메트릭스를 형성하고, 사회연결망 분석으로 네트워크 중심성을 분석하여 단어간의 관계를 살펴보았다. 해당 연구는 국내 최초 온라인 금융상품 비교 추천 플랫폼인 "Finda"의 리뷰/평점데이터를 이용하였다.

  • PDF

Effects of Mobile App Updates on Mobile App Rankings: Free Apps in the App Store (모바일 앱의 업데이트가 모바일 앱의 순위에 미치는 영향: 앱 스토어의 무료 앱을 대상으로)

  • Jo, Huiseung;Im, Kun Shin
    • Information Systems Review
    • /
    • v.18 no.1
    • /
    • pp.125-140
    • /
    • 2016
  • Mobile applications (apps) play a significant role in the proliferation of smartphones. According to statistics from Apple, 100 million apps were downloaded in 2008. Since then, the number of cumulative app downloads have increased exponentially. By October 2014, 85 billion apps had been downloaded worldwide. Many studies have attempted to determine the factors that drive app downloads. However, unlike previous studies, we examine the effects of app updates on app rankings. To achieve this goal, we collected data on rankings (gross rankings and category rankings), update contents, reviewer ratings, and number of reviews on apps listed in the App Store. We then categorized app updates into functionality, reliability, and convenience updates following the buying hierarchy model. We found that functionality updates had a positive effect on app gross ranking whereas reliability updates had a positive effect on category ranking. Our study is the first to explore the effects of update content on app ranking. Moreover, our study provides a practical implication for mobile app developers, who should consider app updates in their product development strategy.

Measuring Similarity Between Movies Based on Sentiment of Tweets (트위터를 활용한 감성 기반의 영화 유사도 측정)

  • Kim, Kyoungmin;Kim, Dong-Yun;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.292-297
    • /
    • 2014
  • As a Social Network Service (SNS) has become an integral part of our everyday lives, millions of users can express their opinion and share information regardless of time and place. Hence sentiment analysis using micro-blogs has been studied in various field to know people's opinion on particular topics. Most of previous researches on movie reviews consider only positive and negative sentiment and use it to predict movie rating. As people feel not only positive and negative but also various emotion, the sentiment that people feel while watching a movie need to be classified in more detail to extract more information than personal preference. We measure sentiment distributions of each movie from tweets according to the Thayer's model. Then, we find similar movies by calculating similarity between each sentiment distributions. Through the experiments, we verify that our method using micro-blogs performs better than using only genre information of movies.

A Text Mining Analysis of Attributes for Satisfaction and Effect of Consumer Ratings to Korea and China Duty Free Stores - Focusing on Chinese Tourists - (텍스트 마이닝을 통한 한국과 중국 시내면세점 만족 속성과 소비자 평점에 미치는 영향 분석 -중국인 관광객을 중심으로)

  • Yang, DaSom;Kim, Jong Uk
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.1-9
    • /
    • 2020
  • This study aims to find new attributes by analyzing Korea and China duty free store online reviews and examine the influence of these attributes on star ratings(satisfaction)of duty free store. For study, we used Dazhong Dianping that largest online review site in China. Using R, we analyzed 5,659 reviews of Korea duty free store and 4,051 reviews of China duty free store. According to the analysis, Sale, Food and Membership attributes had a positive effect on star rating of Korea duty free store. Sale, Product, Airport, Food and Membership had a positive effect on star rating of China duty free store. This study has identified new factors such as food that showed the importance of providing space of restaurants while shopping at duty free store. This study has contributed to the existing literature by finding new attribute such as food. Practically, this finding will help to duty free industry workers better understand the impact of providing space of restaurants on duty free store.