• Title/Summary/Keyword: 르벤버그-마쿼트 알고리즘

Search Result 1, Processing Time 0.015 seconds

Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil (신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Kyung-Hyun;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the ability of neural network in modeling and predicting of the unsteady aerodynamic force coefficients of 2D airfoil with the data obtained from Euler CFD code has been confirmed. Neural network models are constructed based on supervised training process using Levenberg-Marquardt algorithm, combining this into genetic algorithm, hybrid genetic algorithm and the efficiency of the two cases are analyzed and compared. It is shown that hybrid-genetic algorithm is more efficient for neural network of complex system and the predicted properties of the unsteady aerodynamic force coefficients of 2D airfoil by the neural network models are confirmed to be similar to that of the numerical results and verified as suitable representing reduced models.