• Title/Summary/Keyword: 뢰스-고토양 연속층

Search Result 4, Processing Time 0.02 seconds

Formation and sedimentary environment of loess-paleosolsequence in the Jincheon Basin, Chungbuk Province, Korea (진천분지 뢰스-고토양 연속층의 형성과 퇴적 환경)

  • Yoon, Soon-Ock;Park, Chung-Sun;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.1-14
    • /
    • 2013
  • This study aims to investigate the formation and sedimentary environment including formative period, grain composition and climate change from loess-paleosol sequence deposited on a gravel bed of river terrace in the Jincheon Basin, Chungbuk Province. The Jincheon section consists downward of a surface layer, loess-paleosol sequence, transitional layer I, transitional layer II and gravel bed. It can be suggested from the OSL age dating that the sequence was deposited during MIS 6 to 4. The sequence can be divided into four horizons based on the variation in the magnetic susceptibility values. Grain size analysis reveals that the sequence indicates similar properties of grain size to loess deposits in Korea and especially, the Y values in the sequence are lower than those in the loess and paleosol horizons in the Chinese Loess Plateau and similar to those in the Red Clay in the Chinese Loess Plateau and Xiashu loess in the lower reaches of the Yangtze River. These Y values in the sequence can be attributed to the remote source and/or experience of intensive weathering process after deposition in the Korean Peninsula.

Sedimentary Characteristics and Chronology of Loess-paleosol Sequence in Jeongjang-ri, Geochang basin, Gyeongnam Province (경남 거창분지 정창리 뢰스-고토양 연속층의 퇴적물 특성과 편년)

  • Hwang, Sang-Ill;Kang, Chang-Hyeok;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.1-19
    • /
    • 2011
  • The physical and chemical characteristics of loess-paleosol sequence in Jeongjang-ri, Geochang basin are examined using the magnetic susceptibility measurement, grain size analysis, OSL age dating, major, rare earth and trace elements analysis. The grain size characteristics of the loess-palesol sequence are obviously different from those of river sediment forming river terrace deposits and the Chinese Loess Plateau. The loess-paleosol sequence consisting of L1, L1LL1, L1S1, L1L2, S1 and L2 from top to bottom is estimated to MIS 2~MIS 6 and the river terrace to MIS 7. The compositions of major, rare earth and trace elements indicate that the sequence show more weathered characteristics than the Chinese Loess Plateau and originated from the Chinese Loess Plateau. These features are in harmony with the previous studies in Korea.

Weathering Properties and Provenance of Loess-Paleosol Sequence Deposited on River Terrace in the Bongdong Area, Wanju-gun, Jeonbuk Province (전북 완주군 봉동 하안단구 상부 뢰스-고토양 연속충의 풍화특성과 기원지)

  • Hwang, Sang-Ill;Park, Chung-Sun;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.463-480
    • /
    • 2009
  • The weathering properties and provenance of loess-paleosol sequence deposited on gravel layer of river terrace in Bongdong-eup, Wangju-gun, Jeonbuk Province are examined using soil analysis, magnetic susceptibility measurement, grain size and element analysis. The Bongdong section consists of, from top to bottom, Layer 1(paleosol), Layer 2(loess), Layer 3(paleosol) and the gravel layer of river terrace. The magnetic susceptibility values show the systematic variations in the sequence and the results of grain size analysis reveal that the sequence was deposited by not fluvial or slope process, but eolian process, and that contains finer materials than the Daecheon loess and Chinese Loess Plateau. Among the results of soil analysis, organic contents indicate systematic variations similar to the magnetic susceptibility. The wet soil colors further reflect the characteristics of the sequence rather than the dry soil colors. Based on the analytical results of major and rare earth elements, the eolian materials contained in the sequence were deposited by the materials originated from the areas where the Chinese Loess Plateau has been originated or the reworked materials from the Chinese Loess Plateau, and after the depositions, the materials experienced the intensive chemical weathering under the humid-warm climatic conditions in the Korean Peninsula.

Properties and Provenance of Loess-paleosol Sequence at the Daebo Granite Area of Buan, Jeonbuk Province, South Korea (전북 부안 화강암지역 뢰스-고토양 연속층의 퇴적물 특성과 기원지)

  • Park, Chung-Sun;Hwang, Sang-Ill;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.898-913
    • /
    • 2007
  • We examined soil properties and provenance of loess-paleosol sequences at the Daebo Granite area of Buan, Jeonbuk Province, South Korea. The section consists of the surface layer, Layer 1(paleosol), Layer 2(loess), Layer 3(paleosol), Layer 4(loess), and Layer 5(paleosol), from top to bottom and thickness of the exposed section is approximately 280cm. The magnetic susceptibility values show the distinct variations between the loess- and the paleosol layer. Even though pH, ORP, water content, and soil hardness do not display the obvious differences in the section, the organic content indicates the variation similar to those of the magnetic susceptibility. In the respect of the soil colors measured under 3 conditions, although the variations of the wet soil color exceedingly reflect the difference of the layers, these variations are obscure in some points in the section due to the characteristics of the Munsell color system. Based on the geomorphological properties, sedimentary structure, the difference of the major element composition and the condrite-normalized rare earth element(REE) patterns showing the clear difference from the adjacent bedrocks and stream sediments and the similarity to those of the Chinese Loess Plateau, it is suggested that the section was formed by the material originated from the Chinese Loess Plateau and peripheral areas. However, because the material experienced the alteration after sedimentation under the environment of the sediment area, it has the properties different from the material in the provenance areas. This phenomenon may result in the climatic condition of Korea, especially in precipitation.