• Title/Summary/Keyword: 롤백-복구 방식

Search Result 2, Processing Time 0.013 seconds

Data Consistency-Control Scheme Using a Rollback-Recovery Mechanism for Storage Class Memory (스토리지 클래스 메모리를 위한 롤백-복구 방식의 데이터 일관성 유지 기법)

  • Lee, Hyun Ku;Kim, Junghoon;Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • Storage Class Memory(SCM) has been considered as a next-generation storage device because it has positive advantages to be used both as a memory and storage. However, there are significant problems of data consistency in recently proposed file systems for SCM such as insufficient data consistency or excessive data consistency-control overhead. This paper proposes a novel data consistency-control scheme, which changes the write mode for log data depending on the modified data ratio in a block, using a rollback-recovery scheme instead of the Write Ahead Logging (WAL) scheme. The proposed scheme reduces the log data size and the synchronization cost for data consistency. In order to evaluate the proposed scheme, we implemented our scheme on a Linux 3.10.2-based system and measured its performance. The experimental results show that our scheme enhances the write throughput by 9 times on average when compared to the legacy data consistency control scheme.

Design for Deep Learning Configuration Management System using Block Chain (딥러닝 형상관리를 위한 블록체인 시스템 설계)

  • Bae, Su-Hwan;Shin, Yong-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • Deep learning, a type of machine learning, performs learning while changing the weights as it progresses through each learning process. Tensor Flow and Keras provide the results of the end of the learning in graph form. Thus, If an error occurs, the result must be discarded. Consequently, existing technologies provide a function to roll back learning results, but the rollback function is limited to results up to five times. Moreover, they applied the concept of MLOps to track the deep learning process, but no rollback capability is provided. In this paper, we construct a system that manages the intermediate value of the learning process by blockchain to record the intermediate learning process and can rollback in the event of an error. To perform the functions of blockchain, the deep learning process and the rollback of learning results are designed to work by writing Smart Contracts. Performance evaluation shows that, when evaluating the rollback function of the existing deep learning method, the proposed method has a 100% recovery rate, compared to the existing technique, which reduces the recovery rate after 6 times, down to 10% when 50 times. In addition, when using Smart Contract in Ethereum blockchain, it is confirmed that 1.57 million won is continuously consumed per block creation.