• 제목/요약/키워드: 롤링피스톤

검색결과 6건 처리시간 0.018초

휴대용 냉동기 적용을 위한 소형 냉동컴프레서 개발 및 기본 성능에 관한 연구 (Development of a Compact Refrigeration Compressor and the Study of Basic Performance for Portable Refrigerator)

  • 장준영;김영준;남연우
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.385-390
    • /
    • 2012
  • This paper discusses the applicability of a compact rolling piston refrigeration compressor to portable refrigerators. The capacity of this compressor is 1 cc. Using a 12 V BLDC motor, the compressor is driven from 2500 rpm to 6000 rpm. The height of the compression module and motor is approximately 56 mm, and their weight is approximately 374 g. We confirmed the effective operation of the compressor components by evaluating their compression and cooling performance.

모빌리티법을 이용한 롤링피스톤형 회전식 압축기의 축심궤적 해석 (Analysis of Eccentricity Ratio in the Rolling Piston Type Rotary Compressor Using Mobility Method)

  • 강태식;최동훈;이세정
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.22-27
    • /
    • 2001
  • This paper presents an analysis of eccentricity ratio of rolling piston using mobility method which is a powerful tool for analyzing dynamically-loaded journal bearings with efficiency and applicability. And, we investigate influences of design parameters (discharge pressure, radial clearance, rotational velocity of shaft, and eccentricity of compressor) on bearing load and eccentricity ratio. The results show that the discharge pressure, radial clearance and rotational velocity of shaft have significant influence on eccentricity ratio, and the discharge pressure and eccentricity of compressor have influence on bearing load.

냉동 공조용 로터리 콤프레서의 윤활 특성 제1보 : 롤링 피스톤의 거동해석 (The Lubrication Characteristics of Rotary Compressor for Refrigeration & Air-Conditioning (Part I ; The analysis of rolling piston behavior))

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제12권4호
    • /
    • pp.43-51
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system (r & a system) in modem industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. The Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

R410A 로타리 압축기의 토출구 최적설계에 관한 연구 (A Study on the Optimum Design for the Discharge Port of a R410A Rotary Compressor)

  • 김현진;이태진;박신규;황인수
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1245-1254
    • /
    • 2001
  • For a R410A-rolling piston type rotary compressor model which was modified by reducing the cylinder height and shaft eccentricity from R22-compressor version, numerical simulation has been carried out and simulation results have been found to be compared fairly well with those of measurements. EER of this first version of R410A compressor was 4.8% lower than that of R22 compressor. To improve the performance of the R410A compressor model, parametric study on the design parameters related to the discharge port system has been performed by using the numerical simulation program, and optimum conditions for the highest EER have been obtained with the aid of Taguchi method. With the optimized discharge port configuration, EER has been improved by 1.7%.

  • PDF

냉동, 공조용 로터리 콤프레서의 윤활 특성 제1보;롤링 피스톤의 거동해석 (The Lubrication Characteristics of Rotary Compresssor for refrigeration & air-conditioning (Part I; The analysis of Rolling Piston behavior ))

  • 조인성;김진문;백일현;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.7-16
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system( r & a system ) in modern industries brings attention to the urgency of development as a core technology in the area. And it required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to research about the lubrication characteristics of refrigerant compressor which is the core thechnology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoetical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. And the Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

일체형 로타리 압축기-베인 팽창기 (A Combined Rotary Compressor-vane Expander)

  • 김현진;노영재;김용희
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.12-19
    • /
    • 2015
  • As a means of improving cycle performance of a R410A air-conditioning system, a combined structure of compressor and expander was introduced. A vane rotary type expander was designed to share a common shaft with twin type rolling piston rotary compressor in a housing. Numerical simulation on the performance of the combined compressor and expander was carried out. At ARI condition, the volumetric and total efficiencies of the designed vane expander were 69.37% and 30.23%, respectively. With the application of this expander, the compressor input was reduced by 3.91%, and the cooling capacity was increased by 3.98%. As a result, COP of the air-conditioning system was improved by 8.2%. As the pressure difference between the condenser and the evaporator becomes large, COP improvement increases unless the mass flow rate in the expander exceeds that in the compressor.