• Title/Summary/Keyword: 록볼트

Search Result 120, Processing Time 0.027 seconds

Study on Structural Stability Analysis of Excavation Stage Considering Excavation Process and Supporting Materials in Room-and-Pillar Underground Space (격자형 지하공간에서 굴착 공정과 지보재를 고려한 굴착 단계별 구조 안정성 해석 연구)

  • Soon-Wook, Choi;Soo-Ho, Chang;Tae-Ho, Kang;Chulho, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2022
  • The room-and-pillar method or grid-type underground space is a method of forming a space by excavating the excavation part at regular intervals so that it is orthogonal and using natural rock mass as a structure. Such excavation may appear different in size from the excavation stage where the maximum displacement occurs depending on the excavation direction and sequence. In this study, considering the installation of support materials such as shotcrete and rock bolts for the optimal design of the excavation process, the safety and constructability of the design and construction of the grid-type underground space under specific ground conditions were analytically reviewed. The ground conditions were set using an numerical method, and the stress at pillar and displacement at center of room were considered for each excavation stage and construction type under a constant surcharge. The height of the space was 8m, which was set higher than the size of a general office, and was reviewed in consideration of equipment and plant facilities. In addition, the degree of displacement control according to the installation of support materials was reviewed in consideration of shotcrete and rock bolts.

Rock bolt integrity evaluation using reflected and transmitted guided ultrasonic waves (유도초음파의 반사법과 투과법 비교를 통한 록볼트 건전도 평가)

  • Lee, Jong-Sub;Yu, Jung-Doung;Han, Shin-In;Bae, Myeong-Ho;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.42-50
    • /
    • 2008
  • To evaluate rock bolt integrity, destructive test such as pull-out test has been commonly carried out. This method is known as time consuming, expensive, and inaccurate procedure. To improve destructive method, non-destructive techniques using transmitted guided ultrasonic waves were suggested. Note for the transmission method, the source for the generation of ultrasonic waves should be installed during the rock bolt construction. The purpose of this study is to investigate the reflection method using reflected guided ultrasonic waves to evaluate the integrity of the rock bolt grouted, and to compare the results evaluated by the reflection and transmission methods. The guided waves are generated by PZT element and received by AE sensor. The measured signals are analyzed by the wavelet transform. The results show that the energy velocities of guided ultrasonic waves increase with the defect ratio in both transmission and reflection method. The reflection method produces the lower velocity in all defect ratio. This research demonstrates that the reflection method may be suitable and easer method for the field tests.

  • PDF

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Field Evaluation of the Swelled Steel Tube Rockbolts (튜브형 강관 록볼트의 현장 적용성 평가)

  • Son, Sung-Gon;You, Jin-O;You, Joung-Hoon;Chung, Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1149-1156
    • /
    • 2011
  • A rockbolt is one of the most important reinforcement of on-site soil, as with the shotcrete and steel rib. The rockbolt by setting within the tunnel can prevent the deformation of the ground profile; furthermore it improves the structural behavior of soil and rock. In general, the rockbolt is mainly used with reinforced steel. However, steel pipe or the materials with the same strength can be used depending on the soil conditions, ground water outflow condition, and the surrounding of applying location. In Korea, most tunnel construction sites have used cement mortar or resin for steel reinforcement on the rock. Due to the ground water outflow in the construction site, the usability of steel reinforcement is poor and it requires curing time especially after installation. To improve exist above problems, this study introduces the development of a swelled steel pipe rockbolt, as well as presents the field testing and performance results.

  • PDF

Anisotropic Analysis of Tunnel in Sedimentary Rocks (퇴적암 지반 Tunnel의 이방성해석)

  • 김영수;허노영;이재호;성언수
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.109-118
    • /
    • 2001
  • 대구지역은 광범위한 층리가 균일한 형태로 발견되는 지역으로 역학적인 이방성을 나타내고 있다. 이러한 이방성을 가진 지반은 지하 구조물의 거동이 등방과 다른 양상을 보이므로 이방성해석이 수행되어야 한다. 이에 본 연구에서 대구지역 셰일에 대해 암판정상 경암과 보통암에 대해 동일한 시료에서 등방과 이방상태의 탄성정수를 층리각도($\beta$)별로 산출하였고 이것을 바탕으로 하여 유한 요소법을 사용한 이방성 해석을 수행하였다. 해석결과 이방상태의 응력과 변위의 결과는 등방과 다름을 알 수 있었다. 변위는 층리각에 따라 등방에 비해 지표면에서 약 3배까지 증가하며, 록볼트는 최대 2.04배, 숏크리트는 2.93배 증가하게 나타난다. 또한, 측압계수(K$_{0}$)가 이방성 암반과 터널구조물에 미치는 영향을 알 수 있었다. 따라서, 본 지역과 같은 층리가 존재하는 지반의 구조물 건설에서 이방성해석이 필수적임을 알 수 있다.

  • PDF

전면접착형 록볼트의 지보거동: 이론적 수식화와 경계요소해석에 대한 적용

  • 김호영;이희근
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.168-180
    • /
    • 1991
  • Through field measurements, it was shown that the shear stresses along a fully grouted rock blot were proportional to the differences between the displacement of a bolt rod and that of surrounding rock. Accordingly the theoretical equation for the displacement along a rock bolt, R(x), can be proposed as differential form; $ \frac{d^2R(x)}{dx^2}-aR(x)=-a^2U(x)$ where U(x) is the displacement of surrounding rock and α is a constant. In this study above equation was applied to the boundary element analysis which can simulate the supporting behavior of each rock bolt around a tunnel and the results of the implementation of boundary element technique were shown.

  • PDF

A Study on the visco-plastic behavior of the jointed rock mass reinforced by rockbolts during excavation (굴착과정에서 록볼트로 보강된 절리암반의 점소성 거동 분석)

  • 이연구;이정인;조태진
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 1995
  • A two dimensional visco-plastic finite element model capable of handling the multistep excavaton was developed for investigating the effect of excavation-support sequences on the behaviour of underground openings in the jointed rock mass. Ubiquitous joint pattern was considered in the model and joint properties in each set were assumed to be identical. Passive, fully-grouted rockbolts were considered in the model. Visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Coulomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-support sequences. The reliability of the model to the stability analysis for the underground excavation in practice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

A Study on the Characteristics of Tunnel Based on the Rock Mass Classification (암반분류법에 근거한 터널 특성 연구)

  • Lee Song;Ahn Tae-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • A tunnel that uses the RMR method or the Q-system is called a 'modem tunnel' because the New Austrian Tunneling Method (NATM) is not employed, even though shotcrete and rock bolts are used as support. It is known that the modem tunnel, which is supported by shotcrete, is basically different from the conventional tunnel, which is supported by steel ribs. In order to preserve the load-carrying capacity of the rock mass, loosening and excessive rock deformations must be minimized. Although it is known that this can be achieved by applying shotcrete in the case of the modem tunnel, this has not been clearly demonstrated. In order to inspect the distinctions between the conventional tunnel and the modern tunnel, their support characteristics and the rock loads of the rock mass classifications are compared. Terzaghi's rock load classification was used as the conventional tunnel's representative rock mass classification. The RMR method and the Q-system were adopted as the modem tunnel's representative rock mass classification. The study's results show that the load-carrying capacity of shotcrete, when used as the main support in the modern tunnel, is greater than the load-capacity of the steel ribs used in the conventional tunnel. Because it has been verified that the rock loads of their rock mass classifications are not different, then, according to the rock mass classifications, the load-carrying capacity of the rock mass of the modern tunnel, which uses shotcrete, is not greater than that of the conventional tunnel.

A stability study of deep and double-deck tunnels considering shape and reinforcing method of an enlarged section by using numerical analyses (수치해석을 이용한 대심도 복층터널의 확폭단면 형상 및 보강방법에 대한 안정성 연구)

  • You, Kwang-Ho;Jin, Su-Hyun;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.41-56
    • /
    • 2017
  • Recently, the necessity of deep and double-deck tunnels has been grown day by day due to the increase of traffic volume at metropolitans and thus the study on the divergence of those tunnels becomes required. Therefore sensitivity analyses were conducted with FLAC 2D program by selecting ground condition, coefficient of lateral pressure, support pattern, and depth of rock cover as parameters. Ultimately, this study is to find the optimal shape and support method of a diverged section. As the results of this study, it turned out that the box type gave higher stability of the section than arch type unlike the general thought. It can be explained that the arch type has about 30% bigger excavation area than the box type. When the ground conditions are poor, steel pipe grouting reinforcement gives higher stability than rockbolt reinforcement, but its thickness and range do not give a great influence on the stability of the enlarged section.

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.