• Title/Summary/Keyword: 로터 허브 시스템

Search Result 34, Processing Time 0.032 seconds

Current Technology Status of Bearingless Rotor Hub system for Helicopter (헬리콥터 무베어링 로터 허브 시스템 기술동향)

  • Kim, Deog-Kwan;Yun, Cheol-Yong;Song, Keun-Woong;Kim, Seung-Bum;Kim, Seung-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.118-130
    • /
    • 2010
  • In this paper, it is described the current technology status of bearingless rotor hub system for helicopter which is one of major rotor hub system. First, the advantages and disadvantages of major helicopter rotor hub system are described and compared each other. The unique characteristics of bearingless rotor hub system are described compared to other types of rotor hub systems. Next, the main function, role and characteristics of the sub-components of bearingless rotor hub system are described. Furtherly, recent helicopters which adopt this bearingless rotor hub system are described and introduced.

  • PDF

Numerical Analysis of HAT Tidal Current Rotors (수평축 조류발전로터 성능실험의 수치적 재현과 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.620-623
    • /
    • 2009
  • 여러 해양에너지 중 유체의 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경의 영향을 최소화 하면서 많은 에너지를 연속적으로 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 조류발전시스템의 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 블래이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 로터를 설계하며, 설계정보와 실험데이터를 바탕으로 수치모델을 구현하여 실험에서 직접 계측할 수 없는 로터 주변의 유체현상 및 간섭영향 등을 예측할 수 있다. 본 논문에서는 변화하는 유속에 따른 HAT 로터의 시동속도, 회전수를 측정하여 로터 형상과 허브-직경비가 다른 로터의 성능을 고찰하고, 이를 수치모델로 구현하여 로터주변 유동변화를 연구하였다.

  • PDF

Fatigue Safe Life Analysis of Helicopter Bearingless Rotor Hub Composite Flexbeam (헬리콥터 무베어링 로터 허브 복합재 유연보 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.561-568
    • /
    • 2013
  • After we designed Bearingless rotor hub system for 7,000lb class helicopter, flexbeam fatigue analysis was conducted for validation of requirement life time 8,000 hours. sectional structural analysis method applying elastic beam model was used. Fatigue analysis for two sections of flexbeam which were expected to weak to fatigue damage from result of static analysis was conducted. Extension, bending and torsion stiffness of flexbeam section shape was calculated using VABS for structure analysis. S-N curve of two composite material which composed flexbeam was generated using wohler equation. Load analysis of bearingless rotor system was conducted using CAMRAD II and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used flexbeam fatigue safe life analysis.

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

Requirement Analysis and Drag Prediction for the Aerodynamic Configuration of a Bearingless Rotor Hub (무베어링 로터 허브 형상에 대한 요구도 분석 및 항력 예측)

  • Kang, Hee-Jung
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The requirement for the aerodynamic hub drag, allocated from the system requirement of development of a bearingless rotor hub, was analyzed and embodied to be substantiated by the methodology assigned from the requirement. Drag prediction for the initial hub configuration was carried out by hand calculation using aerodynamic drag coefficients and the design change about the sectional shape of torque tube was suggested to satisfy the requirement. Finally, drag prediction was performed for the changed hub configuration by using unstructured overset mesh technique and parallel computation and the calculated result satisfied the requirement of the aerodynamic hub drag. It was found that the drag of final hub configuration was also within the range of drag inferred from the trendline of developed helicopter.

Effect of the Inner Pressure on a Hybrid Composite Flywheel Retor (하이브리드 복합재 플라이휠 로터에 작용하는 내압의 효과)

  • Oh Je-Hoon;Han Sang-Chul;Kim Myung-Hoon;Ha Sung Kyu
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • The delamination in the filament-wound composite flywheel rotor often lowers the performance of the flywheel energy storage system. A conventional ring type hub usually causes tensile stresses on the inner surface of the composite rotor, resulting in lowering the maximum rotational speed of the rotor. In this work, the stress and strain distributions within a hybrid composite rotor were derived from the two-dimensional governing equation with the specified boundary conditions, and an optimum pressure at the inner surface of the rotor was proposed to minimize the strength ratio and maximize the storage energy. A split type hub was introduced to apply the calculated optimum pressure at the inner surface, and a spin test was performed up to 40,000 rpm to demonstrate the performance of the split type hub with radial and circumferential strains measured using a wireless telemetry system. From the analysis and the test, it was found that the split type hub successfully generates a compressive pressure on the inner surface of the rotor, which can enhance the performance of the composite rotor by lowering the strength ratio within the rotor.

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter (Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구)

  • Kim, Deok Gwan;Ju, Jin;Lee, Myeong Gyu;Hong, Dan Bi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.99-104
    • /
    • 2003
  • This paper described the general dynamic point for rotor design and the design procedure of low vibration blade. Generally, rotor rotating natural frequencies are determined to minimize hub loads, blade vibration and to suppress ground resonance at rotor design stage. First, through rotor frequency diagram, natural frequencies must be far away from resonance point and rotating loads generated from blade can be transformed to non-rotating load to predict fuselage vibration. Vibration level was predicted at each forward flight condition by calculating cockpit's vertical acceleration transferred from non-rotating hub load assuming a fuselage as a rigid body. This design method is applied to design current Next-generation Rotor System Blade(NRSB) and will be applied to New Rotor which will be developed Further.

Fatigue Safe Life Analysis of Helicopter Rotor Bearingless Hub System Composite Components (헬리콥터 로터 무베어링 허브 시스템 복합재 구성품 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • We designed bearingless rotor hub system which replace mechanical hinge/bearing with composite beam component and conducted fatigue analysis for flexbeam and torque tube. Extension/bending/torsional stiffness was calculated from 2D section analysis using VABS and 2D section structure analysis was applied for strain calculation. S-N curve of each composite material was generated using Wohler equation and fatigue analysis was conducted on weakness section which was decided from static structure analysis. CAMRAD II was used for load analysis and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used fatigue safe life analysis.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.