• 제목/요약/키워드: 로터 다이아프램

검색결과 2건 처리시간 0.014초

가스 재열기 로터 부위의 응력 해석 (Stress Analysis of Rotor Part in Gas-Gas Heater)

  • 이후광;황석환;최재승
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.639-642
    • /
    • 2001
  • The possibility of weight reduction of rotor part in gas-gas geater(GGH) is studied from the viewpoint of allowable stress. In this work, finite element analysis(FEA) is performed with original model and three weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated gas and untreated gas and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level. Fatigue life assessment is not considered because pressure difference, the only cyclic load, can be ignored. The possible weight-reduced model is presented.

  • PDF

화력발전용 가스재열기의 응력 해석 (Stress Analysis of Gas-Gas Heater in Thermal Power Plant)

  • 황석환;최재승;이후광
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.204-211
    • /
    • 2002
  • Today\`s industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization(FGD) system is installed in thermal power plant and gas-gas heater(GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas-gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design. And finite element analysis(FEA) for rotor part in GGH is performed with original model and two weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated and untreated gas, and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level.