• Title/Summary/Keyword: 로터형상 설계(rotor design)

Search Result 78, Processing Time 0.026 seconds

Profile Design of the Inner Rotor of a Gerotor by the Composite Curve of Circular Arcs (원호조합곡선에 의한 제로터 내부로터의 형상설계)

  • Lee Sung-Chul
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.79-86
    • /
    • 2006
  • As the gerotor set with ideal profile meshes too tight, the reduction in the size of the rotor is generally adopted for a smooth operation. In this paper, a method of the profile modification for providing clearances was proposed. The meshing properties of the gerotor were analyzed and the non-boundary section of the inner rotor was identified, which denoted that the adjacent chambers were in the same pressure state. Clearances were imposed on the non-boundary section of the inner rotor, and then the profile of that section was modified as a composite curve of arcs. The other sections of the inner rotor were also interpolated as arcs. Thus, the whole profile of the inner rotor was designed as a composite curve of arcs.

Mechanical Design and Dynamic Analysis of 3MW Rotor for Wind Energy Conversion System (3MW 풍력발전기 구조설계 및 회전자의 동특성 해석)

  • Lee, H.G.;Kim, D.E.;Jung, Y.G.;Han, H.S.;Suh, H.S.;Chung, C.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.333-336
    • /
    • 2008
  • 3MW 풍력발전기용 발전기의 구조적 특성을 소개하고 회전자의 동특성 해석을 수행하였다. 이 발전기는 증속기를 사용하였으며 정격속도는 1459 rpm 이며 30% over speed trip 조건을 적용하여 설계되었다. 회전자 pole에 전원 공급 없이 자기장을 만드는 영구자석을 사용하는 형태로 구조는 간단하다. 발전기의 냉각방법은 공극을 냉각하기 위하여 팬을 이용하여 공기를 순환하며 고정자 외형에는 냉각채널을 부착하여 냉각수를 순환한다. 회전기계의 설계 시에는 반드시 진동을 고려하여 가능하면 진동을 줄이는 방향으로 설계가 되어야 하며 회전축 계의 설계에 있어서는 계의 강도, 위험속도, 불평형 진동응답 및 안정성 등을 고려하여야 한다. 본 논문에서는 물리설계를 기본으로 하여 설계된 발전기의 형상을 간단하게 설명하고, 발전기의 회전자를 상용 유한요소 해석 프로그램인 ANSYS 를 이용하여 해석을 수행하였다. 해석절차는 정적해석을 수행하고 다음으로 모드해석을 수행 하였다. 모드형상에 따른 주파수를 표기하고 해석 결과를 나타내었다.

  • PDF

Optimum Rotor Shape Design of Flux Switching Motor using RSM and Performance Improvement by New Type Winding Method (RSM을 이용한 FSM의 로터 형상 설계와 특성 개선을 위한 새로운 권선 기법)

  • Jun, Myung-Jin;Jang, Soon-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1059-1060
    • /
    • 2011
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part II : Rotordynamics Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part II : 로터다이나믹스 해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.265-271
    • /
    • 2012
  • In the preceding Part I study, for improving the unbalance response vibration of a large PRT motor-generator rotor fundamentally by design, a series of design analyses were carried out for bearing improvement by retrofitting from original plain partial journal bearings, applied for operation at a rated speed of 1,800 rpm, to final tilting pad journal bearings. To satisfy evenly key basic lubrication performances such as the minimum lift-off speed and maximum oil-film temperature, a design solution of 5-pad tilting pad journal bearings and maximizing the direct stiffness by about two times has been achieved. In this Part II study, a detailed rotordynamic analysis of the large PRT motor-generator rotor-bearing system will be performed, applying both the original plain partial journal bearings and the retrofitted tilting pad journal bearings, to confirm the effect of rotordynamic vibration improvement after retrofitting. The results show that the rotor unbalance response vibrations with the tilting pad journal bearings are greatly reduced by as much as about one ninth of those with the plain partial journal bearings. In addition, for the tilting pad journal bearings there exist no critical speed up to the rated speed and just one instance of a concerned critical speed around the rated speed, whereas for the plain partial journal bearings there exist one instance of a critical speed up to the rated speed and two instances of concerned critical speeds around the rated speed.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Aerodynamic Analysis, Required Power and Weight Estimation of a Compound (Tilt rotor + Lift + Cruise) Type eVTOL for Urban Air Mobility using Reverse Engineering Techniques (역설계 기법을 사용한 도심항공 모빌리티용 복합형(틸트로터 + 양력 + 순항) eVTOL의 공력 해석, 요구 동력 및 중량 예측)

  • Kim, Dong-Hee;Lee, Joon-Hee;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • Recently, eVTOL, the next-generation of eco-friendly transportation, has been in the spotlight due to global warming along with traffic jams in large cities of many countries. This study benchmark the external features of Hyundai Motors S-A1, a compound eVTOL combined fixed and tilt rotors among many types of eVTOLs, to create the basic configuration using reverse design techniques. Basic configurations were created using CATIA and aerodynamic analyses were performed using the aircraft design and aerodynamic analysis programs, OpenVSP, XFLR5, and the aircraft wetted area, drag, and lift were calculated after selecting the airfoil, incidence angle, and dihedral and anhedral angles through trade study. Also, required powers were estimated for completing the given mission profile and components weight and the total weight were predicted using the estimation formula and data survey.

반응면 기법을 이용한 에어포일 공력형상 최적설계

  • Park, Young-Min;Kim, Yu-Shin;Chung, Jin-Deog;Lee, Jang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.248-255
    • /
    • 2004
  • In this study, aerodynamic shape design of airfoils was performed by using RSM(response surface method) and two-dimensional Navier-Stokes solver. Numerical experiment points were determined by D-optimal method and quadratic response surfaces were constructed by using JMP. For the validations of design method, NACA 64621 airfoil was inversely designed to have aerodynamic characteristics of Bell airfoil. The design method was applied to the aerodynamic design of both smart UAV wing airfoil and low Reynolds rotor-blade airfoil for unmanned helicopter. The optimized airfoils showed improved performance with various constraint conditions.

  • PDF

Study on the Optimum Rotor Blade Design of the 5 kW HAWT by BEMT (BEMT를 이용한 5 kW급 수평축 풍력발전용 로터 블레이드 형상 최적설계에 관한 연구)

  • Kim, Mun-Oh;Lee, Min-Woo;Kim, Chang-Goo;Kim, Tae-Hyung;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.444-447
    • /
    • 2009
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The aerodynamic characteristics of NACA 63415 airfoils were predicted via X-FOIL and the post stall characteristics were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the Velux wind tunnel test results. The rated power of the testing rotor is 5kW at design conditions. The power, estimated by use of predicted lift and drag coefficient via X-FOIL becomes a little higher than experimental one.

  • PDF

Study on the Optimum Rotor Blade Design of the 1 kW HAWT by BEMT (BEMT를 이용한 1 kW급 수평축 풍력발전용 로터 블레이드 형상 최적설계에 관한 연구)

  • Lee, Min-Woo;Kim, Jeong-Hwan;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.356-362
    • /
    • 2007
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The aerodynamic characteristics of NACA 63-415 airfoils were predicted via X-FOIL and the post stall characteristics were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the Velux wind tunnel test results. The rated power of the testing rotor is 1 kW at design conditions. The power, estimated by use of predicted lift and drag coefficient via X-FOIL becomes a little higher than experimental one.

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.