• Title/Summary/Keyword: 로켓연소실

Search Result 320, Processing Time 0.036 seconds

Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Combustor (액체추진제 로켓엔진 연소기 저주파 동특성)

  • Ha Seong-Up;Jung Young-Seok;Kim Hui-Tae;Han SangYeop;Cho Gwang-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.91-101
    • /
    • 2004
  • With the mathematic linear model of a combustor which consists of a combustion chamber and injectors, the analysis of low frequency dynamic characteristics of a liquld-propellant rocket engine combustor was performed. Propellant mass flowrate was varied by combustion chamber pressure feedback, therefore low frequency oscillation was appeared. Increasing the time constant of a combustion chamber and injector pressure differences and decreasing combustion time delay increased the combustor system stability. The variation of injector time constant little affected stability. The system was always stable, when there was no combustion time delay. Increasing combustion time delay decreased oscillation frequency and damping ratio, and the system eventually became unstable.

Performance Characteristics of GCH4-LOx Small Rocket Engine According to the Equivalence Ratio Variation at a Constant Pressure of Combustion Chamber (동일한 연소실 압력에서의 당량비 변화에 따른 기체메탄-액체산소 소형로켓엔진의 성능특성)

  • Yun Hyeong Kang;Hyun Jong Ahn;Chang Han Bae;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.34-42
    • /
    • 2022
  • A correlation between propellant supply condition and chamber pressure in GCH4-LOx small rocket engine was explored and hot-firing tests were conducted to analyze the engine performance characteristics according to the equivalence ratio variation at a constant chamber pressure. Correlation studies have shown that chamber pressure is linearly proportional to oxidizer supply pressure. As a result of the test, the thrust, specific impulse and characteristic velocity that are the main performance parameters of a rocket engine, were found to be enhanced as the equivalence ratio starting from a fuel-lean condition approached the stoichiometric ratio, but the efficiencies of characteristic velocity and specific impulse were on the contrary, in their dependency on the equivalence ratio.

Negative DC-shift Instability in Hybrid Rocket (하이브리드 로켓에서의 Negative DC-shift 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.522-525
    • /
    • 2009
  • DC-shift phenomenon can be observed in Hybrid rocket combustion. This phenomenon makes performance drop which is structure problem or reduce thrust. Understanding of DC-shift phenomenon, the condition of the hybrid rocket combustion stability can be found. In this paper, the condition of Negative DC-shift was found and made by changing oxidizer flow with pre-post chamber. The Negative C-shift phenomenon and characteristic were defined from the experimental study.

  • PDF

Acoustic and Vaporization Responses due to High-Frequency Combustion Instabilities (음향 및 기화반응 모델을 이용한 고주파 연소불안정 예측)

  • 이길용;황용석;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.1-1
    • /
    • 1998
  • 로켓엔진 추력발생용으로 광범위하게 사용되는 액체추진제는 고성능, 대용량의 액체추진제 로켓엔진에서는 필연적으로 고주파 연소불안정의 문제를 수반하며, 이 연소불안정의 정도는 연소성능과 더불어 엔진개발의 성패를 좌우하는 중요한 여건이 된다. 따라서 안정한 로켓의 비행을 보장하기 위해서는 연소불안정의 문제가 선결되어야 한다. 연소불안정의 기본 메커니즘은 연소기에서 발생하는 압력섭동에 반응하여 불안정한 음향에너지를 되먹임하는 연소과정으로 설명된다. 연소불안정 현상이 발견된 이후 실험 및 이론적 접근에 의해 이와 같은 연소불안정 메커니즘 및 예측에 대한 체계적인 연구가 이루어져 왔으며, 현재까지의 다양한 고주파 연소불안정 예측방법 중에서 음향 및 기화 응답함수를 이용하는 방법은 직관적 고찰에 의존하는 단순한 연소모델을 적용하며 주로 음향적 섭동에 의한 연소의 반응을 연소안정성 평가의 파라메터로 사용한다. 이와 같은 음향적인 예측방법은 연소불안정 현상을 이론적으로 전개하므로 경제적으로 각종 설계변수에 대한 연소불안정의 변화를 구분할 수 있는 장점이 있어 성능 및 호환설계와 병행하여 로켓엔진 연소실의 초기 안정성 설계방법으로 주로 사용된다.

  • PDF

Study on Calorimeteric Chamber for Heat Flux Measurement in Liquid Rocket Engine (액체로켓 추력실에서 heat flux측정을 위한 calorimeteric chamber의 연구)

  • Kim, Byeong Hun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.76-81
    • /
    • 2003
  • To investigate the convective heat transfer phenomena inside the Lox/Kerosene liquid rocket combustion chamber, hot fire tests were performed by using a water-cooled calorimetric chamber. The calorimetric chamber consists of one cylindrical section and nozzle section with independent cooling passage. To measure the heat flux, thermocouples were installed inlet and outlet of cooling passage of each section. The investigated range of combustion chamber pressure is from 100 psi to 300psi at fixed O/F ratio of 2.0 and radiation heat transfer from the hot gas to the surface is not considered. The measured heat flux was almost linearly depended on the chamber pressure.

Transient Thermal Analysis on Wall Temperature Change of Rocket Engine Combustion Chamber Considering Film-Cooling (막냉각을 고려할 때 로켓엔진 연소실 벽면 온도변화에 대한 비정상 열해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, Il-Yoon;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.37-46
    • /
    • 2012
  • The calculation model for heat transfer analysis of rocket engine combustion chamber considering film-cooling has been established. Convective, radiative heat transfers and film-cooling effect in combustion chamber were evaluated using empirical equations especially for rocket engine combustors, and for heat transfer outward from chamber wall general convective and radiative equations were applied. Structural grid has been generated inside chamber wall for FVM calculations, and transient thermal analyses were carried out by time-marching techniques. LOx/kerosene rocket engine with chamber pressure of 50 bar has been analysed, and it is shown that, in that case, the film-cooling less than 4% remarkably contributes to reduce wall temperature, but the effect of the effect of film-cooling more than about 4% is not significantly increased.

Transient Analysis on Heat Transfer of Rocket Engine Combustion Chamber Considering Film-cooling (막냉각을 고려한 로켓엔진 연소실 열전달 비정상 해석)

  • Ha, Seong-Up;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.867-868
    • /
    • 2011
  • Transient Analysis on heat transfer of rocket engine combustion chamber and wall temperature variation was carried out, especially, calculations of LOx/kerosene rocket engine with/without fuel film-cooling were conducted. Convective and radiative heat flux inside combustion chamber wall were calculated by the empirical equations for rocket engine combustion, and conduction of wall interior was calculated by numerical method with 2D axisymmetric grid. In this calculations the transient variations of wall temperature, the location changes of peak temperature and so on affected by film-cooling were analyzed.

  • PDF

Combustion Characteristics of a Small Hybrid Rocket Using Paraffin-Wax as Fuel (파라핀 연료를 사용하는 소형 하이브리드 로켓의 연소 특성)

  • Kim, Kwon-Ho;Park, Hyun-Chun;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • This study experimentally examines combustion characteristics of a hybrid rocket in which solid paraffin is used as a fuel, while oxidizer is pure oxygen. Especially, the experiment investigates the effects of chamber pressure and configuration of fuel grain. The pressure inside the combustion chamber is varied by changing a flow rate of oxidizer. The regression rate is observed to increase as the chamber pressure does. There also exists the effects of shape of fuel grain on thrust. Characteristic of paraffin hybrid rocket changes with shape of fuel grain. When there is a room near the injector, thrust increases. On the other hand, the room near the nozzle does not contribute to thrust increasement.

  • PDF

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine at Design Point (액체로켓엔진용 가스발생기의 연소성능시험)

  • Han, Yeoung-Min;Kim, Seung-Han;Moon, Il-Yoon;Kim, Hong-Jip;Kim, Jong-Gyu;Seol, Woo-Seok;Lee, Soo-Yong;Kwon, Sun-Tak;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.125-130
    • /
    • 2003
  • 본 논문에서는 액체로켓엔진에서 터보펌프의 160kW급 터빈을 구동하고, 액체산소와 케로신을 추진제로 사용하는 가스발생기의 설계점 연소성능시험 결과에 대해 논의하였다. 충돌형 F-O-F 인젝터, 물냉각 채널을 가진 연소실, torch ignitor, turbulence ring 그리고 측정 링을 갖는 가스발생기에 대해 기술하였고, 점화, 연소, 종료 등의 시험 cyclogram에 대해 언급하였다. 설계점에서의 연소시험 및 turbulence ring 장착여부, 연소실 길이 변화에 따른 연소시험의 결과들에 대해 기술하였다. 연소시험 결과 가스발생기는 설계점에서 안정된 작동성을 보여주었고, 연소압력 및 온도 등의 성능이 예측치에 근접하는 결과를 보여 주었다. Turbulence ring은 출구에서의 가스온도를 균일하게 분포시켜 효과적인 혼합 장치임을 보여 주었고, 4-6msec 정도에서의 잔류시간에서는 연소효율의 차이가 크지 않음을 알 수 있었다. 가스발생기 출구에서의 온도는 공급되는 추진제의 O/F ratio에 따라 매우 민감하게 반응함을 알 수 있었다.

  • PDF

Domestic and Foreign Research Trends in Rocket Combustor Instability (국내외 로켓연소기의 연소불안정 연구동향 분석)

  • Bae, Jinhyun;Jeong, Seokgyu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.47-53
    • /
    • 2017
  • One of the most common causes of failure of space launch vehicles is combustion instability. Combustion instability is a phenomenon that the pressure perturbation inside the combustion chamber is greatly amplified due to the interaction of the pressure perturbation inside the combustion chamber and the heat release perturbation. When this phenomenon becomes worse, an engine failure or launch vehicle crash occurs. In order to predict and avoid such combustion instability, understanding of the phenomenon is indispensable, and numerical, theoretical, and experimental approaches to combustion instability have been carried out worldwidely.

  • PDF