• Title/Summary/Keyword: 로켓엔진 병렬화

Search Result 2, Processing Time 0.018 seconds

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.

Study on the cooling water supply method to the cooling water injection nozzle in the steam generator (증기발생기 내 냉각수 분사 노즐로의 냉각수 공급 방법에 관한 연구)

  • Oh, Jeong-hwa;Shin, Min-kyu;Cho, Young-seok;Ko, Young-sung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, a method for increasing the initial water supply was employed to protect the water injection nozzle by the flame when supplying the water to the steam generator. During the initial steam generator test, the flow rate was controlled by using the only venturi, but cooling water was not supplied to the combustion chamber at the beginning of combustion, thereby resulting in damage to the water nozzle. To solve this problem, a venturi and an orifice were configured in parallel to increase the initial supply flow rate to form a differential pressure between the water manifold and the combustion chamber. Venturi and orifice supply sequences were established through the water flow tests, and combustion tests were conducted for final verification. Consequently, a continuous supply of the cooling water at the beginning of combustion was achieved, and the experiment was successfully performed without damaging the cooling water nozzle.