Patent Production and Technological Performance of Korean Firms: The Role of Corporate Innovation Strategies (특허생산과 기술성과: 기업 혁신전략의 역할)
-
- Journal of Technology Innovation
- /
- v.22 no.1
- /
- pp.149-175
- /
- 2014
This study analyzed the effect of corporate innovation strategies on patent production and ultimately on technological change and new product development of firms in South Korea. The intent was to derive efficient strategies for enhancing technological performance of the firms. For the empirical analysis, three sources of data were combined: four waves of the Human Capital Corporate Panel Survey (HCCP) data collected by the Korea Research Institute for Vocational Education and Training (KRIVET), corporate financial data obtained from the Korea Information Service (KIS), and corporate patent data provided by the Korean Intellectual Property Office (KIPO). The patent production function was estimated by zero-inflated negative binomial (ZINB) regression. The technological performance function was estimated by two-stage regression, taking into account the endogeneity of patent production. An ordered logit model was applied for the second stage regression. Empirical results confirmed the critical role of corporate innovation strategies in patent production and in facilitating technological change and new product development of the firms. In patent production, the firms' R&D investment and human resources were key determinants. Higher R&D intensity led to more patents, yet with decreasing marginal productivity. A larger stock of registered patents also led to a larger flow of new patent production. Firms were more prolific in patent production when they had high-quality personnel, intensely investing in human resource development, and adopting market-leading or fast-follower strategy as compared to stability strategy. In technological performance, the firms' human resources played a key role in accelerating technological change and new product development. R&D intensity expedited new product development of the firm. Firms adopting market-leading or fast-follower strategy were at an advantage than those with stability strategy in technological performance. Firms prolific in patent production were also advanced in terms of technological change and new product development. However, the nexus between patent production and technological performance measures was substantially reduced when controlling for the endogeneity of patent production. These results suggest that firms need to strengthen the linkage between patent production and technological performance, and take strategies that address each firm's capacities and needs.
In a market where new and used cars are competing with each other, we would run the risk of obtaining biased estimates of cross elasticity between them if we focus on only new cars or on only used cars. Unfortunately, most of previous studies on the automobile industry have focused on only new car models without taking into account the effect of used cars' pricing policy on new cars' market shares and vice versa, resulting in inadequate prediction of reactive pricing in response to competitors' rebate or price discount. However, there are some exceptions. Purohit (1992) and Sullivan (1990) looked into both new and used car markets at the same time to examine the effect of new car model launching on the used car prices. But their studies have some limitations in that they employed the average used car prices reported in NADA Used Car Guide instead of actual transaction prices. Some of the conflicting results may be due to this problem in the data. Park (1998) recognized this problem and used the actual prices in his study. His work is notable in that he investigated the qualitative effect of new car model launching on the pricing policy of the used car in terms of reinforcement of brand equity. The current work also used the actual price like Park (1998) but the quantitative aspect of competitive price promotion between new and used cars of the same model was explored. In this study, I develop a model that assumes that the cross elasticity between new and used cars of the same model is higher than those amongst new cars and used cars of the different model. Specifically, I apply the nested logit model that assumes the car model choice at the first stage and the choice between new and used cars at the second stage. This proposed model is compared to the IIA (Independence of Irrelevant Alternatives) model that assumes that there is no decision hierarchy but that new and used cars of the different model are all substitutable at the first stage. The data for this study are drawn from Power Information Network (PIN), an affiliate of J.D. Power and Associates. PIN collects sales transaction data from a sample of dealerships in the major metropolitan areas in the U.S. These are retail transactions, i.e., sales or leases to final consumers, excluding fleet sales and including both new car and used car sales. Each observation in the PIN database contains the transaction date, the manufacturer, model year, make, model, trim and other car information, the transaction price, consumer rebates, the interest rate, term, amount financed (when the vehicle is financed or leased), etc. I used data for the compact cars sold during the period January 2009- June 2009. The new and used cars of the top nine selling models are included in the study: Mazda 3, Honda Civic, Chevrolet Cobalt, Toyota Corolla, Hyundai Elantra, Ford Focus, Volkswagen Jetta, Nissan Sentra, and Kia Spectra. These models in the study accounted for 87% of category unit sales. Empirical application of the nested logit model showed that the proposed model outperformed the IIA (Independence of Irrelevant Alternatives) model in both calibration and holdout samples. The other comparison model that assumes choice between new and used cars at the first stage and car model choice at the second stage turned out to be mis-specfied since the dissimilarity parameter (i.e., inclusive or categroy value parameter) was estimated to be greater than 1. Post hoc analysis based on estimated parameters was conducted employing the modified Lanczo's iterative method. This method is intuitively appealing. For example, suppose a new car offers a certain amount of rebate and gains market share at first. In response to this rebate, a used car of the same model keeps decreasing price until it regains the lost market share to maintain the status quo. The new car settle down to a lowered market share due to the used car's reaction. The method enables us to find the amount of price discount to main the status quo and equilibrium market shares of the new and used cars. In the first simulation, I used Jetta as a focal brand to see how its new and used cars set prices, rebates or APR interactively assuming that reactive cars respond to price promotion to maintain the status quo. The simulation results showed that the IIA model underestimates cross elasticities, resulting in suggesting less aggressive used car price discount in response to new cars' rebate than the proposed nested logit model. In the second simulation, I used Elantra to reconfirm the result for Jetta and came to the same conclusion. In the third simulation, I had Corolla offer $1,000 rebate to see what could be the best response for Elantra's new and used cars. Interestingly, Elantra's used car could maintain the status quo by offering lower price discount ($160) than the new car ($205). In the future research, we might want to explore the plausibility of the alternative nested logit model. For example, the NUB model that assumes choice between new and used cars at the first stage and brand choice at the second stage could be a possibility even though it was rejected in the current study because of mis-specification (A dissimilarity parameter turned out to be higher than 1). The NUB model may have been rejected due to true mis-specification or data structure transmitted from a typical car dealership. In a typical car dealership, both new and used cars of the same model are displayed. Because of this fact, the BNU model that assumes brand choice at the first stage and choice between new and used cars at the second stage may have been favored in the current study since customers first choose a dealership (brand) then choose between new and used cars given this market environment. However, suppose there are dealerships that carry both new and used cars of various models, then the NUB model might fit the data as well as the BNU model. Which model is a better description of the data is an empirical question. In addition, it would be interesting to test a probabilistic mixture model of the BNU and NUB on a new data set.
Overview of Research: Product availability is one of important competences of store to fulfill consumer needs. If stock-outs which means a product what consumer wants to buy is not available occurs, consumer will face decision-making uncertainty that leads to consumer's negative responses such as consumer dissatisfaction on store. Stockouts was much studied in the field of academia as well as practice in other countries. However, stock-outs has not been researched at all in Marketing and/or Distribution area in Korea. The main objectives of this study are to find out determinants of consumer responses such as Substitute, Delay, and Leave(SDL) when consumer encounters out-of-stock situation and then to examine the effects of these factors on consumer responses. Specifically, this study focuses on situational characteristics(e.g., purchase urgency and surprise), store characteristics (e.g., product assortment and store convenience), and consumer characteristics (e.g., brand loyalty and store loyalty). Then, this study empirically investigates relationships these factors with consumers behaviors such as product substitution, purchase delay, and store switching. is the estimation results of l\1NL model, and
shows the marginal effects for each determinant to consumer's responses(SDL). Significant statistical results were as follows. Purchase urgency, purchase quantities, pre-purchase plan, product assortment, store price image, brand loyalty, and store loyalty were turned out to be significant determinants to influence consumer alternative behaviors in case of out-of-stock situation. Specifically, first, product substitution behavior was triggered by purchase urgency, surprise, purchase quantities, pre-purchase plan, product assortment, store price image, brand loyalty, and store loyalty. Second, purchase delay behavior was led by purchase urgency, purchase quantities, and brand loyalty. Third, store switching behavior was influenced by purchase urgency, purchase quantities, pre-purchase plan, product assortment, store price image, brand loyalty, and store loyalty. Finally, when out-of-stock situation occurs, store convenience and salesperson service did not have significant effects on consumer alternative responses.
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)