• 제목/요약/키워드: 로지스틱 회귀 모델

검색결과 194건 처리시간 0.041초

로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구 (Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model)

  • 진수봉;이종우
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.482-490
    • /
    • 2017
  • 본 연구는 사고심각도 분류 및 예측을 위한 철도사고조사 통계기법에 관한 연구이다. 그동안의 선형 회귀분석은 사고 심각도 분석에 어려움이 있었으나 로지스틱회귀분석은 이를 보완할 수 있었다. 데이터마이닝 기법인 로지스틱회귀분석을 활용, 서울지하철(5~8호선) 역사 내 전도사고 중 에스컬레이터 전도사고 발생에 영향을 주는 사고예측 모형 변수는 사고자 연령, 음주여부, 사고 당시상황 및 행동, 핸드레일 잡음 여부였다. 분석의 정확도는 76.7%로 설명되었고 분석방법 결과에 따르면 정확도와 유의수준 측에서 로지스틱회귀분석 방법이 도시철도 사상사고 예측모형을 개발하는데 유용한 데이터마이닝 기법으로 판단된다.

건강행위정보기반 고혈압 위험인자 및 예측을 위한 통계분석 (Statistical Analysis for Risk Factors and Prediction of Hypertension based on Health Behavior Information)

  • 허병문;김상엽;류근호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.685-692
    • /
    • 2018
  • 본 연구는 통계분석을 이용한 중년 성인의 고혈압 예측모델 개발이 목적이다. 국민건강영양조사자료(2013년-2016년)를 사용하여 통계분석과 예측모델을 개발하였다. 이진 로지스틱 회귀분석으로 통계적 유의한 고혈압 위험인자를 제시하였으며, Wrapper 변수선택기법을 적용한 로지스틱회귀와 나이브베이즈 알고리즘을 이용하여 예측모델을 개발하였다. 통계분석에서 고혈압에 가장 높은 연관성을 갖는 인자는 남성에서 WHtR (p<0.0001, OR = 2.0242), 여성에서 AGE(p<0.0001, OR = 3.9185)로 나타났다. 예측모델의 성능평가에서, 로지스틱 회귀 모델이 남성(AUC = 0.782)과 여성(AUC = 0.858)에서 가장 좋은 예측력을 보였다. 우리의 연구 결과는 고혈압에 대한 대규모 스크리링 도구를 개발하는데 중요한 정보를 제공하며, 고혈압 연구에 대한 기반정보로 활용할 수 있다.

산재보험 부정수급 식별모형에 관한 연구 (A Study on the Fraud Detection of Industrial Accident Compensation Insurance)

  • 함승오;홍정식
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.342-345
    • /
    • 2008
  • 산재 발생 시 산재근로자는 근로복지공단을 통해서 각종 급여를 받게 된다. 본 논문은 심사 과정과 급여지급 후에 부정수급으로 판명된 산재 청구 건을 데이터 마이닝을 통해서 분석하여 부정수급의 유형을 발견하고자 한다. 이 연구에서는 서울관내 4개 지사에서 8년 동안(2000년$\sim$2007년)의 총 61,536명의 최초요양 신청을 한 산재근로자 자료를 대상으로 하였고, 종속변수에 영향을 미치는 8개의 독립변수를 선택해서 사용한다. 데이터 마이닝을 적용함에 있어서 가장 효율적인 허위 부정 탐지 모델을 만들기 위해 의사결정나무분석(Decision Tree)과 로지스틱 회귀분석(Logistic Regresion)등의 다양한 기법을 적용하여 결과를 비교분석 하고, 오분류 비용을 적용하여, 최적의 분류결정 값을 가지는 모델을 도출한다. 분석결과, 로지스틱 회귀분석이 산재보험 부정수급 유형 발견에 보다 효과적인 모델로 판명되었다. 또한 판별점(Cut-Off) 0.01로 했을 때 4개변수(요양기간, 업종형태, 의료기관, 재해발생형태)가 부정수급에 탐지하는데 영향력이 큰 변수로 선정되었다.

  • PDF

차등서비스를 위한 혼잡요금부과의 타당성 검토와 로지스틱 회귀모형을 이용한 인터넷 접속 확률 예측 (An Idea, Strategy of Congestion Pricing for Differentiated Services and Forecasting Probability of Access using Logistic Regression Model)

  • 지선수
    • 한국산업정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2005
  • 관련 기업 및 ISP 업체에게는 투자의 매력을 부여하며 인터넷의 사용시간대 및 사용량에 따라 빈약한 사용자, 건강한 사용자, 과다한 사용자 등으로 구분하여 차등요금을 부여하는 합리적인 전략이 필요하다. 이 논문에서 차등요금부과의 타당성을 검토한다. 그리고 로지스틱 회귀모형을 이용하여 혼잡에 따른 차등요금, 지연시간, 접속만족도 등에 따라 실제적으로 인터넷 사용자들이 인터넷 접속을 얼마나 유지하는 지를 측정할 수 있는 관련 예측모델을 제시한다. 이러한 예측모델을 이용하여 인터넷 접속 또는 비접속 확률을 예측하는 분석률은 $69.5\%$이었음을 확인하였다.

  • PDF

제3기 퇴적암 및 화산암 분포지의 산사태 예측모델 (A Prediction Model of Landslides in the Tertiary Sedimentary Rocks and Volcanic Rocks Area)

  • 채병곤;김원영;나종화;조용찬;김경수;이춘오
    • 지질공학
    • /
    • 제14권4호
    • /
    • pp.443-450
    • /
    • 2004
  • 이 연구는 제3기 퇴적암과 화산암이 분포하는 지역의 자연사면에서 발생하는 토석류 산사태를 예측하고자 로지스틱 회귀분석(logistic regression analysis)을 이용하여 예측모델을 개발한 것이다. 통계적 방법을 이용한 산사태 예측모델 개발을 위해 산사태 자료는 경북 포항지역에서 1998년 발생한 산사태를 대상으로 수집하였다. 로지스틱 회귀분석의 기본 특성을 고려하여 현장조사 및 실내토질시험은 산사태 발생지점 전체와 임의로 선택한 미발생 지점을 대상으로 실시하였다. 산사태 발생에 영향을 미치는 인자는 로지스틱 회귀분석을 실시하여 최종적으로 6개 영향인자를 선정하였다. 이들 6개 인자는 지형요소 2개와 지질요소 4개로 구성되어 있다. 개발된 모델은 신뢰성 검증을 수행한 결과 $90\%$ 이상의 예측률을 확보한 것으로 나타났다. 이 모델을 바탕으로 기존에 제시된 변성암 및 화강암 분포지에서의 산사태 예측모델과 함께 지질특성을 고려한 산사태 발생의 가능성을 확률적${\cdot}$정량적으로 예측할 수 있게 되었다.

WPM(Word Piece Model)을 활용한 구글 플레이스토어 앱의 댓글 감정 분석 연구 (A Study on the Sentiment analysis of Google Play Store App Comment Based on WPM(Word Piece Model))

  • 박재훈;구명완
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.291-295
    • /
    • 2016
  • 본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.

  • PDF

WPM(Word Piece Model)을 활용한 구글 플레이스토어 앱의 댓글 감정 분석 연구 (A Study on the Sentiment analysis of Google Play Store App Comment Based on WPM(Word Piece Model))

  • 박재훈;구명완
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.291-295
    • /
    • 2016
  • 본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.

  • PDF

딥러닝과 머신러닝을 활용한 독자 반응 기반 웹툰 데뷔작 성공 예측 모델 (A Success Prediction Model for Debut Webtoon Based on Reader reaction Using Deep Learning and Machine Learning)

  • 허은영;김승화;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.770-773
    • /
    • 2019
  • 본 논문에서는 매년 성장하는 웹툰 시장 속에서 신인 작가들이 성공할 수 있는 성공 요인을 밝히고자 하였다. 국내 1위 웹툰 플랫폼인 네이버 웹툰 중 데뷔작을 기준으로 완결 웹툰 212개, 연재 중인 웹툰 112개, 총 324개의 웹툰을 수집하여 연구를 진행하였다. 기존 선행연구와의 차별화를 두기 위해 독자의 직접적인 반응 중 하나인 댓글을 성공 요인에 포함하였다. 댓글에 담긴 긍정, 부정을 나타내는 주관을 탐지하기 위해 딥러닝을 이용하여 감성 분석을 실시하였다. 각 웹툰에 대한 댓글 반응을 포함하여 평균, '좋아요' 수, 장르 그리고 첫 화 댓글 수와 5화까지 평균 댓글 수를 흥행에 영향을 미치는 독립변수로 사용했다. 댓글 반응이 중요 요인인지를 확인하기 위해 각 모델 생성 시 댓글 반응을 포함한 모델과 포함하지 않은 모델을 생성하여 성능 평가를 실시하였다. 로지스틱 회귀분석, 아다 부스트, 그리고 서포트 벡터 머신 모델을 정확도와 ROC 그래프를 이용해 효율성을 비교하고, 이를 통해 댓글 반응을 활용한 로지스틱 회귀 모델이 가장 적합하다고 판단하였다. 모델 생성 결과 '좋아요' 수, 1화 댓글 수, 댓글 반응 순으로 성공 요인에 많은 영향을 미치는 것을 알 수 있었다.

순서형 대설 예보를 위한 통계 모형 개발

  • 손건태;이정형;류찬수
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.101-105
    • /
    • 2005
  • 호남지역에 대한 대설특보 예보를 위한 통계모형 개발을 수행하였다. 일 신적설량에 따라 세법주(0: 비발생, 1: 대설주의보, 2: 대설경보)로 구분되는 순서형 자료 형태를 지니고 있다. 두가지 통계 모형(다등급 로지스틱 회귀모형, 신경회로망 모형)을 고려하였으며, 수치모델 출력자료를 이용한 역학-통계모형 기법의 하나인 MOS(model output statistics)를 적용하여 축적된 수치모델 예보자료와 관측치의 관계를 통계모형식으로 추정하여 예측모형을 개발하였다. 군집분석을 사용하여 훈련자료와 검증자료를 구분하였으며, 예보치 생성을 위하여 문턱치를 고려하였다.

  • PDF

Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로 (An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China)

  • 딩쉬엔저;이영찬
    • 산업융합연구
    • /
    • 제16권4호
    • /
    • pp.33-46
    • /
    • 2018
  • 개인신용평가는 은행이 대출을 승인할 때 수익성 있는 의사결정을 적절히 유도할 수 있는 효과적인 도구이다. 최근 많은 분류 알고리즘 및 모델이 개인신용평가에 사용되고 있다. 개인신용평가 기법은 대체로 통계적 방법과 비 통계적 방법으로 구분된다. 통계적 방법에는 선형회귀분석, 판별분석, 로지스틱 회귀분석, 의사결정나무 등이 포함된다. 비 통계적 방법에는 선형계획법, 신경망, 유전자 알고리즘 및 Support Vector Machines 등이 포함된다. 그러나 신용평가모형 개발을 위해 어떠한 방법이 최선인지에 관해서는 일관된 결론을 내리기는 어렵다. 본 논문에서는 중국 금융기관의 개인 신용 데이터를 사용하여 가장 대표적인 신용평가 기법인 로지스틱 회귀분석, 신경망 그리고 Support Vector Machines의 성능을 비교하고자 한다. 구체적으로, 세 가지 모형을 각각 구축하여 고객을 분류하고 분석 결과를 비교하였다. 분석결과에 따르면, Support Vector Machines이 로지스틱 회귀분석과 신경망보다 더 나은 성능을 가지는 것으로 나타났다.