• Title/Summary/Keyword: 로지스틱회귀

Search Result 1,772, Processing Time 0.027 seconds

Relationship between Insomnia and Depression in Type 2 Diabetics (2형 당뇨병 환자에서 불면증과 우울 증상의 관련성)

  • Lee, Jin Hwan;Cheon, Jin Sook;Choi, Young Sik;Kim, Ho Chan;Oh, Byoung Hoon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.27 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Objectives : Many of the patients with type 2 diabetes are associated with sleep problems, and the rate of insomnia is known to be higher in the general population. The aims of this study were to know the frequency and clnical characteristics of insomnia, and related variables to insomnia in patients diagnosed with type 2 diabetes. Methods : For 99 patients from 18 to 80 years of age (65 males and 34 females) with type 2 diabetes, interviews were performed. Total sleep time and sleep latency was evaluated. Insomnia was evaluated using the Korean Version of the Insomnia Severity Index (ISI-K). Severity of depressive symptoms were evaluted using the Korean version of the Hamilton Depression Scale (K-HDRM). According to the cutoff score of 15.5 on the ISI-K, subjects were divided into the group of type 2 diabetics with insomnia (N=34) and those without insomnia (N=65) at first, and then statistically analyzed. Results : TInsomnia could be found in 34.34% of type 2 diabetics. Type 2 diabetics with insomnia had significantly more single or divorced (respectively 11.8%, p<0.05), higher total scores of the K-HDRS ($11.76{\pm}5.52$, p<0.001), shorter total sleep time ($5.35{\pm}2.00hours$, p<0.001), and longer sleep latency ($50.29{\pm}33.80minutes$, p<0.001). The all item scores of the ISI-K in type 2 diabetics with insomnia were significantly higher than those in type 2 diabetics without insomnia, that is, total ($18.38{\pm}2.69$), A1 (Initial insomnia) ($2.97{\pm}0.76$), A2 (Middle insomnia) ($3.06{\pm}0.69$), A3 (Terminal insomnia) ($2.76{\pm}0.61$), B (Satisfaction) ($3.18{\pm}0.72$), C (Interference) ($2.09{\pm}0.97$), D (Noticeability) ($2.12{\pm}1.09$) and E (Distress) ($2.21{\pm}0.81$) (respectively p<0.001). Variables associated with insomnia in type 2 diabetics were as following. Age had significant negative correlation with A3 items of the ISI-K (${\beta}=-0.241$, p<0.05). Total scores of the K-HDRS had significant positive correlation, while total sleep time had significant negative correlation with all items of the ISI-K (respectively p<0.05). Sleep latency had significant positive correlation with total,, A1, B and E item scores of the ISI-K (respectively p<0.05). Conclusions : Insomnia was found in about 1/3 of type 2 diabetics. According to the presence of insomnia, clinical characteristics including sleep quality as well as quantity seemed to be different. Because depression seemed to be correlated with insomnia, clinicians should pay attention to early detection and intervention of depression among type 2 diabetics.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.