• Title/Summary/Keyword: 로지스틱(Logistic) 함수

Search Result 67, Processing Time 0.019 seconds

Image Quality Enhancement by Using Logistic Equalization Function (로지스틱 평활화 함수에 의한 영상의 화질개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • This paper presents a quality enhancement of images by using a histogram equalization based on the symmetric logistic function. The histogram equalization is a simple and effective spatial processing method that it enhances the quality by adjusting the brightness of image. The logistic function that is a sigmoidal nonlinear transformation function, is applied to non-linearly enhance the brightness of the image according to its intensity level frequency. We propose a flexible and symmetrical logistic function by only using the intensity with maximum frequency in an histogram and the total number of pixels. The proposed function decreases the computation load of an exponential function in the traditional logistic function. The proposed method has been applied for equalizing 5 images with a different resolution and histogram distribution. The experimental results show that the proposed method has the superior enhancement performances compared with the source images and the traditional global histogram equalization, respectively.

Image Histogram Equalization Using Flexible Logistic Transformation Function (유연한 로지스틱 변환함수를 이용한 영상의 히스토그램 평활화)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.787-795
    • /
    • 2009
  • This paper presents a histogram equalization based on the logistic function for enhancing the quality of images. The histogram equalization is a simple and effective spatial processing method that it enhances the quality by adjusting the brightness of image. The logistic function that is a nonlinear transformation function is applied to adaptively enhance the brightness of the image according to its intensity level frequency. We propose a flexible and asymmetrical logistic function by only using the intensity level with maximum frequency and the maximum intensity level in an histogram, and the total number of pixels. The proposed function excludes both the computation load of an exponential function and the heuristic setting of an optimal parameter values in the traditional logistic function. The proposed method has been applied for equalizing many images with a different resolution and histogram distribution. The experimental results show that the proposed method has the superior enhancement performances and the faster equalizing speed compared with the traditional histogram equalization and the adaptively modified histogram equalization, respectively. And the proposed histogram equalization can be used in various multimedia systems in real-time.

Estimation of Asymmetric Bell Shaped Probability Curve using Logistic Regression (로지스틱 회귀모형을 이용한 비대칭 종형 확률곡선의 추정)

  • 박성현;김기호;이소형
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • Logistic regression model is one of the most popular linear models for a binary response variable and used for the estimation of probability function. In many practical situations, the probability function can be expressed by a bell shaped curve and such a function can be estimated by a second order logistic regression model. However, when the probability curve is asymmetric, the estimation results using a second order logistic regression model may not be precise because a second order logistic regression model is a symmetric function. In addition, even if a second order logistic regression model is used, the interpretation for the effect of second order term may not be easy. In this paper, in order to alleviate such problems, an estimation method for asymmetric probabiity curve based on a first order logistic regression model and iterative bi-section method is proposed and its performance is compared with that of a second order logistic regression model by a simulation study.

  • PDF

The Comparative Study for Truncated Software Reliability Growth Model based on Log-Logistic Distribution (로그-로지스틱 분포에 근거한 소프트웨어 고장 시간 절단 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Due to the large-scale application software syslmls, software reliability, software development has animportantrole. In this paper, software truncated software reliability growth model was proposed based on log-logistic distribution. According to fixed time, the intensity function, the mean value function, the reliability was estimated and the parameter estimation used to maximum likelihood. In the empirical analysis, Poisson execution time model of the existiog model in this area and the log-logistic model were compared Because log-logistic model is more efficient in tems of reliability, in this area, the log-logistic model as an alternative 1D the existiog model also were able to confim that you can use.

Log-density Ratio with Two Predictors in a Logistic Regression Model (로지스틱 회귀모형에서 이변량 정규분포에 근거한 로그-밀도비)

  • Kahng, Myung Wook;Yoon, Jae Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2013
  • We present methods for studying the log-density ratio that enables the selection of the predictors and the form to be included in the logistic regression model. Under bivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of two predictors. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms. We also explore other conditions in which the crossproduct and quadratic terms are not needed in the logistic regression model.

Parameter estimation for the imbalanced credit scoring data using AUC maximization (AUC 최적화를 이용한 낮은 부도율 자료의 모수추정)

  • Hong, C.S.;Won, C.H.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.309-319
    • /
    • 2016
  • For binary classification models, we consider a risk score that is a function of linear scores and estimate the coefficients of the linear scores. There are two estimation methods: one is to obtain MLEs using logistic models and the other is to estimate by maximizing AUC. AUC approach estimates are better than MLEs when using logistic models under a general situation which does not support logistic assumptions. This paper considers imbalanced data that contains a smaller number of observations in the default class than those in the non-default for credit assessment models; consequently, the AUC approach is applied to imbalanced data. Various logit link functions are used as a link function to generate imbalanced data. It is found that predicted coefficients obtained by the AUC approach are equivalent to (or better) than those from logistic models for low default probability - imbalanced data.

A Study on the Reasonability of Logistic Testing Efforts on S/W (S/W 로지스틱 테스트 노력함수의 적정성에 관한 연구)

  • Che Gyu-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.261-264
    • /
    • 2006
  • 소프트웨어 개발 후 인도 전 테스트 단계중에 발생되는 테스트 노력 소요량을 고려한 소프트웨어 신뢰도 성장 모델을 제시하여 테스트 노력소요량 동태를 시간함수인 로지스틱 곡선으로 설명한다. 그러므로, 본 논문에서는 로지스틱 테스트노력 곡선이 소프트웨어의 개발/테스트 노력곡선으로 적절하게 표현될 수 있다는 것과 실제 데이터를 근거로 하여 적용하여서 예측성이 매우 좋은 능력을 가지고 있다는 것을 보이고자 한다.

  • PDF

An educational tool for binary logistic regression model using Excel VBA (엑셀 VBA를 이용한 이분형 로지스틱 회귀모형 교육도구 개발)

  • Park, Cheolyong;Choi, Hyun Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.403-410
    • /
    • 2014
  • Binary logistic regression analysis is a statistical technique that explains binary response variable by quantitative or qualitative explanatory variables. In the binary logistic regression model, the probability that the response variable equals, say 1, one of the binary values is to be explained as a transformation of linear combination of explanatory variables. This is one of big barriers that non-statisticians have to overcome in order to understand the model. In this study, an educational tool is developed that explains the need of the binary logistic regression analysis using Excel VBA. More precisely, this tool explains the problems related to modeling the probability of the response variable equal to 1 as a linear combination of explanatory variables and then shows how these problems can be solved through some transformations of the linear combination.

Parameter estimation of linear function using VUS and HUM maximization (VUS와 HUM 최적화를 이용한 선형함수의 모수추정)

  • Hong, Chong Sun;Won, Chi Hwan;Jeong, Dong Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1305-1315
    • /
    • 2015
  • Consider the risk score which is a function of a linear score for the classification models. The AUC optimization method can be applied to estimate the coefficients of linear score. These estimates obtained by this AUC approach method are shown to be better than the maximum likelihood estimators using logistic models under the general situation which does not fit the logistic assumptions. In this work, the VUS and HUM approach methods are suggested by extending AUC approach method for more realistic discrimination and prediction worlds. Some simulation results are obtained with both various distributions of thresholds and three kinds of link functions such as logit, complementary log-log and modified logit functions. It is found that coefficient prediction results by using the VUS and HUM approach methods for multiple categorical classification are equivalent to or better than those by using logistic models with some link functions.

Development of a Numerical Model for the Rapidly Increasing Heat Release Rate Period During Fires (Logistic function Curve, Inversed Logistic Function Curve) (화재시 열방출 급상승 구간의 수치모형 개발에 관한 연구 (로지스틱 함수 및 역함수 곡선))

  • Kim, Jong-Hee;Song, Jun-Ho;Kim, Gun-Woo;Kweon, Oh-Sang;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.20-27
    • /
    • 2019
  • In this study, a new function with higher accuracy for fire heat release rate prediction was developed. The 'αt2' curve, which is the major exponential function currently used for fire engineering calculations, must be improved to minimize the prediction gap that causes fire system engineering inefficiency and lower cost-effectiveness. The newly developed prediction function was designed to cover the initial fire stage that features rapid growth based on logistic function theory, which has a more logical background and graphical similarity compared to conventional exponential function methods for 'αt2'. The new function developed in this study showed apparently higher prediction accuracy over wider range of fire growth durations. With the progress of fire growth pattern studies, the results presented herein will contribute towards more effective fire protection engineering.