• Title/Summary/Keyword: 로봇 운동학

Search Result 66, Processing Time 0.025 seconds

로봇 동력학

  • 김호룡
    • Journal of the KSME
    • /
    • v.28 no.2
    • /
    • pp.138-145
    • /
    • 1988
  • 본 글에서는 로봇의 운동학적 및 동력학적 문제를 풀기 위한 기본적 이론과 그 적용례를 들었다. 운동학적 고찰은 로봇 링크의 위치와 방향을 설정하기 위한 동차변환에 근거하여 이루어졌고, 기준좌표계와 조인트 좌표계사이의 정변환과 역변환이 정운동학과 역운동학적 과정에서 고찰되 었다. 동력학적 과정에서는 로봇은 능동기구로 간주하여 운동방정식이 유도되었으며 이 유도 과정에서 운동학적 분석결과가 어떻게 사용되는가를 살펴보았다. 한편 유도된 운동방정식이 어떻게 활용되는가를 정동력학과 역동력학적 과정을 통하여 살펴보았으며 이러한 과정들은 로 봇의 설계, 모델링(simulation), 제어 등 연구에 기초이론으로 사용됨을 적용례를 통하여 보였고 일반적으로 정운동학, 역운동학, 역동력학, 정동력학의 순으로 전개됨이 합리적이라는 것을 인 지하였다.

  • PDF

Design of Snake Robot and Snakelike Locomotion (뱀형 로봇의 설계 및 주행 알고리즘)

  • Lee, Duck-Jai;Lee, Chang-Hoon;Kim, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.7-10
    • /
    • 2003
  • 뱀형 로봇은 자유도보다 액추에이터의 수가 적은 논홀로믹 구속조건(nonholonomic constraint)을 가지며, 단순한 신체구조 이지만 초-여유자유도 구속조건(hyper-redundant constraint)을 이용해서 기밀한 운동과 다양한 기능을 만들어내는 특징을 가지고 있다. 본 논문에서는 6개의 관절로 각 링크가 2차원 상에서 직렬로 연결된 뱀형 로봇의 기구설계 및 기구학과 동력학을 바탕으로 설계된 기구에 대해 해석하여 운동방정식을 유도하여 추진원리와 운동원리에 관하여 알아본다. 기본적인 운동 메커니즘을 해석하여 구현한 알고리즘을 제작한 로봇에 적용하여 추진 원리와 운동원리를 검증한다. 실험용 로봇은 링크 중앙에 법선 방향으로 마찰력이 발생할 수 있도록 수동바퀴를 가지고 있으며, PC와 RF(Radio Frequency)로 직렬통신을 하며 PC에서의 운동 명령의 조작에 의해 전진, 후진, 좌/우 방향으로 회전을 할 수 있도록 운동 알고리즘을 적용할 수 있도록 제작되었다. 특징으로는 일반적으로 토크를 입력으로 하지 않고 각도를 입력으로 하여 관절을 제어하고 있다는 점이 있으며, 운동방정식 또한 이에 대한 관계를 바탕으로 유도한 것이다.

  • PDF

Dynamics and motion control of an underactuated manipulator (비구동 관절을 가지는 매니퓰레이터의 동력학과 운동제어)

  • Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.476-481
    • /
    • 1997
  • 본 논문에서는 비구동 관절을 가지는 2링크 매니퓰레이터의 동력학 해석과 운동제어를 제1적분을 기초로 하여 전개하고 있다. 매니퓰레이터의 운동이 제1적분의 적분상수에 의해서 기술되는 것을 보이고, 제1적분을 이용하여 매니퓰레이터의 동력학을 해석하고 있다. 그리고 해석된 동력학을 적극적으로 이용하는 운동제어 알고리즘을 구성하고 시뮬레이션을 통하여 확인하고 있다. 끝으로 비구동 관절에 마찰이 작용하는 경우, 브레이크등의 보조수단을 이용하지 않고도 매니퓰레이터의 제어가 가능함을 보이고 있다.

  • PDF

Study on Model Based Control for the Roll Motion of an Underwater Robot (수중로봇의 롤 운동제어를 위한 모델 베이스 제어에 관한연구)

  • Kim, Chi-Hyo;Park, Woo-Kun;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.323-330
    • /
    • 2009
  • We have been developing an underwater robot for harbour construction using a parallel mechanism The robot is attached to the rope of a crane, which curries a large stone into the undersea The robot's yaw and pitch are controlled by hydraulic cylinders but its roll is uncontrollable. We mount propellers in both side of the robot to generate the roll motion This paper studies on the control for the roll motion of a underwater robot. A gyro-sensor is used to measure the angle in a roll motion We develop the dynamic model to describe the robot's roll motion by a second order non-linear system and identify the model parameters by recursive least square and adaptive identifier. PD control, recursive model based control and adaptive model based control are applied with the dynamic model which computes the control input to compensate disturbances. This paper introduces the underwater robot system and presents the simulated and experimental results of the proposed controller.

Dynamic Modeling and Control of a Hybrid Locomotion Vehicle (복합형 이동로봇의 동력학적 모델링 및 제어)

  • 김형대;권대갑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1447-1454
    • /
    • 1991
  • 본 로봇은 wheeled type과 legged type의 장점을 함께 가지고 있으므로 주행 속도가 빠르며 환경적응력이 좋다. 기존 로봇과 비교할때 Y.Icihkawa등이 개발한 HLV와 가장 유사하지만 모터 3개로 6개의 바퀴-다리 유닛을 구동하므로 모터15개로 5개의 바퀴-다리유닛을 구동하는 Ichikawa HLV와 동력전달구조에서 많이 상이하다. 뿐만아니라 본 로봇은 3개의 모터만 사용했기 때문에 주행제어가 훨씬 간단하고 제작 비가 저렴하며 장애물 및 계단승강시 걸음새가 훨씬 간단하다.(Ichikawa HLV 경우 뒷 쪽 2개의 다리를 동시에 들 수 없기 때문에 계단 승강시 몸체 회전을 적절하게 섞어야 한다.)

Design of Autonomous Bio-mimetic Robotic Fish with Swimming Artificial Intelligence (생체모방 자율유영의 인공지능 물고기 로봇 설계)

  • Shin, Kyoo Jae;Lee, Jeong Bae;Seo, Young Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.913-916
    • /
    • 2014
  • 본 논문의 수중로봇 도미(Domi) ver1.0는 관상어용 물고기 로봇 개발을 목표로 연구 개발되었다. 물고기 로봇은 머리, 1단, 2단 몸체와 꼬리부분과 2개의 구동 관절로 구성되어 있다. 물고기 로봇의 추력에 적합한 구동부 선정을 위하여 물고기 로봇 모델링과 유영 해석을 통하여 관절 구동부가 설계되었다. 또한 물고기 로봇의 유영알고리즘은 Lighthill 운동학 해석을 기초로 생체 모방의 유영 근사화 방법을 적용하였다. 설계된 물고기는 수동유영 및 자율운영모드로 동작된다. 수동유영모드는 RF 송수신에 의하여 구현된다. 본 설계된 물고기로봇 도미 ver1.0은 수중 현장시험 평가을 통하여 추력, 내구성, 방수성 등의 성능이 우수함을 확인하였다.

손 재활 로봇 연구동향

  • Gu, Gwang-Min;Jang, Pyeong-Hun
    • ICROS
    • /
    • v.16 no.3
    • /
    • pp.16-20
    • /
    • 2010
  • 손 재활 로봇 연구의 목표는 손 기능 장애를 갖는 환자들을 대상으로 치료사를 대신하여 치료는 수행하는 것이다. 일반적으로 손의 운동기능 장애는 골절, 인대 손상 또는 노화에 의한 근력 소실에 의해 발생하거나 뇌졸중이나 파킨슨병, 척수 손상 등에 의한 신경계 문제에 의해 발생할 수 있다.

Kinematic Characteristics of Walking-Assistance Robot (보행보조 로봇의 운동학적 특성)

  • Bae, Ha-Suk;Kim, Jin-Oh;Chun, Han-Yong;Park, Kwang-Hun;Lee, Kyung-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.503-515
    • /
    • 2011
  • We developed a walking-assistance robot for walking rehabilitation and assessed the kinematic characteristics of a prototype. The walking-assistance robot is composed of hip, knee, and ankle joints, and each joint is driven by a motor with a decelerator. The equations of angular displacement while walking were derived by theoretically analyzing human locomotion, and the calculated angular displacements were then applied to the robot controller. The output angular displacement of each joint was measured and compared with its input angular displacement in walking experiments on a treadmill at various walking speeds and strides. The differences between the input and output angular displacements are 5.22% for the hip and 2.97% for the knee joints, and it has been confirmed that the walking-assistance robot works well.

Trajectory Tracking Control for A Wheeled Mobile Robot (모바일 로봇의 경로 추종 제어)

  • Kim, Jin-Hwan
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.73-77
    • /
    • 2009
  • This paper presents the trajectory tracking control for mobile robot. The designed controller consists of kinematic and dynamic controller. Kinematic controller has two gains and it reduces the trial time for gain setting as compared convectional controller with three gains. Dynamic controller includes the compensation of friction and disturbance. It can improve the performance of the trajectory tracking under the various environment. Simulation results shows that the proposed controller has a stable performance.